Influence of electron emission on operation of a constricted arc discharge in a pulsed forevacuum plasma-cathode electron source
Abstract The research of influence of electron emission and processes associated with the formation of a pulsed large-radius electron beam on operation of a constricted arc discharge, which forms emission plasma in a forevacuum plasma-cathode electron source, is presented. Processes, occurring in case of generation of the electron beam at forevacuum pressure range 3–20 Pa, provide lower operating voltage of the constricted arc discharge. The constricted arc voltage decreases with increasing pressure and increasing accelerating voltage. However, at pressure more than 15 Pa, the arc voltage decreases until a certain minimum value is reached, and then arc voltage is almost independent on pressure and accelerating voltage. This minimum value of the constricted arc voltage is on average 1.5–2 times higher as compared with voltage of the cathodic arc at the same discharge current. The observed decrease of operating voltage of the constricted arc is most likely caused by accelerated back-streaming ions, which move toward the emission electrode from beam-produced plasma. These accelerated ions partially penetrate into the hollow anode of discharge system through the mesh emission electrode and facilitate formation of the arc plasma, and thus provides lower voltage of the constricted arc.