scholarly journals Basic analysis on heat transfer phenomena in natural circulation for liquid sodium

2021 ◽  
Vol 2072 (1) ◽  
pp. 012012
Author(s):  
R Wulandari ◽  
S Permana ◽  
Suprijadi

Abstract Natural convention, the heat transfer on fluid due to density differences that can be caused by differences in fluid temperature. One example application of natural convection is cooling system, such as nuclear reactor cooling system. The purpose of this study is to analysis the basic characteristic heat transfer of sodium liquid in the natural circulation system for steady state analysis and transient characteristic with Finite Element Method. The selected module is the Non-Isothermal FLow (NITF) module. This module is a combination of three basic equations, namely the continuity equation, the Navier-Stokes equation, and the dynamic equation of heat transfer in fluid. The simulation model measures 1.5 x 2 (m) with sodium liquid (Na) as a fluid.

2022 ◽  
Author(s):  
Vikrant Chandrakar ◽  
Arnab Mukherjee ◽  
Jnana Ranjan Senapati ◽  
Ashok Kumar Barik

Abstract A convection system can be designed as an energy-efficient one by making a considerable reduction in exergy losses. In this context, entropy generation analysis is performed on the infrared suppression system numerically. In addition, results due to heat transfer are also shown. The numerical solution of the Navier-stokes equation, energy equation, and turbulence equation is executed using ANSYS Fluent 15.0. To perform the numerical analysis, different parameters such as the number of funnels, Rayleigh number (Ra), inner surface temperature, and geometric ratio are varied in the practical range. Results are shown in terms of heat transfer, entropy generation, irreversibility (due to heat transfer and fluid friction), and Bejan number with some relevant parameters. Streamlines and temperature contours are also provided for better visualization of temperature and flow field around the device. Results show that heat transfer and mass flow rate increase with the increase in Ra. Entropy generation and the irreversibility rise with an increase in the number of funnels and geometric ratio. Also, the Bejan number decreases with an increase in Ra and the number of funnels. A cooling time is also obtained using the lumped capacitance method.


Author(s):  
A. S. Chinchole ◽  
Arnab Dasgupta ◽  
P. P. Kulkarni ◽  
D. K. Chandraker ◽  
A. K. Nayak

Abstract Nanofluids are suspensions of nanosized particles in any base fluid that show significant enhancement of their heat transfer properties at modest nanoparticle concentrations. Due to enhanced thermal properties at low nanoparticle concentration, it is a potential candidate for utilization in nuclear heat transfer applications. In the last decade, there have been few studies which indicate possible advantages of using nanofluids as a coolant in nuclear reactors during normal as well as accidental conditions. In continuation with these studies, the utilization of nanofluids as a viable candidate for emergency core cooling in nuclear reactors is explored in this paper by carrying out experiments in a scaled facility. The experiments carried out mainly focus on quenching behavior of a simulated nuclear fuel rod bundle by using 1% Alumina nanofluid as a coolant in emergency core cooling system (ECCS). In addition, its performance is compared with water. In the experiments, nuclear decay heat (from 1.5% to 2.6% reactor full power) is simulated through electrical heating. The present experiments show that, from heat transfer point of view, alumina nanofluids have a definite advantage over water as coolant for ECCS. Additionally, to assess the suitability of using nanofluids in reactors, their stability was investigated in radiation field. Our tests showed good stability even after very high dose of radiation, indicating the feasibility of their possible use in nuclear reactor heat transfer systems.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Simone Paccati ◽  
Lorenzo Cocchi ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Abstract This work presents the results of a numerical analysis performed on a gas turbine leading edge cooling system. The investigation was carried out in order to provide a detailed interpretation of the outcomes of a parallel experimental campaign. The cooling geometry consists of a cold bridge-type impingement system: a radial channel feeds an array of holes, which in turn generate impingement jets cooling down the inner side of the leading edge surface. Coolant is extracted by five rows of holes, replicating film cooling and showerhead systems. Two impingement geometries were considered, presenting different holes arrangements and diameters but sharing the same overall passage area, in order to highlight the effect of different coolant distributions inside the leading edge cavity. For both geometries, a single test point was investigated in static and rotating conditions, with an equivalent slot Reynolds number of around 8200 and feeding conditions corresponding to the midspan radial section of the blade. Both steady Reynolds averaged Navier Stokes (RANS) approach and scale adaptive simulation (SAS) were tested. Due to the strong unsteadiness of the flow field, the latter proved to be superior: as a consequence, the SAS approach was adopted to study every case. A fairly good agreement was observed between the measured and computed heat transfer distributions, which allowed to exploit the numerical results to get a detailed description of the phenomena associated with the different cases. Results reveal that the two holes arrangements lead to strongly different heat transfer patterns, related to the specific flow phenomena occurring inside the leading edge cavity and to the mutual influence of the various system features. Rotational effects also appear to interact with the supply condition, altering the jet lateral spreading and the overall heat transfer performance.


Author(s):  
Yukiko Kawabata ◽  
Masayoshi Matsuura ◽  
Shizuka Hirako ◽  
Takashi Hoshi

The Japan Atomic Power Company has initiative in developing the DMS concept as a 400MWe-class light water reactor. The main features of the DMS relative to overcoming the scale demerit are the miniaturization and simplification of systems and equipment, integrated modulation of construction, standardization of equipment layouts and effective use of proven technology. The decrease in primary containment vessel (PCV) height is achieved by reducing the active fuel length of the DMS core, which is about two meters compared with 3.7 meters in the conventional BWR. The short active fuel length reduces the drop in core pressure, and overcomes the natural circulation system. And by using the lower steam velocity in the upper plenum in the reactor pressure vessel (RPV), we can adopt a free surface separation (FSS) system. The FSS eliminates the need for a separator and thus helps minimize the RPV and PCV sizes. In order to improve safety efficiency, developing an Emergency Core Cooling System (ECCS) for the DMS was considered. The ECCS configuration in the DMS was examined to achieve core coverage and economic efficiency from the following. 1: Eliminating high-pressure injection systems. 2: Adopting passive safety-related systems. 3: Optimizing distribution for the systems and power source for the ECCS. In this way the configuration of the ECCS for the DMS was established, providing the same level of safety as the ABWR and the passive systems. Based on the results of Loss of Coolant Accident (LOCA) analysis, core cover can be achieved by this configuration. Therefore, the plant concept was found to offer both economic efficiency and safety.


Author(s):  
Rémy Fransen ◽  
Nicolas Gourdain ◽  
Laurent Y. M. Gicquel

This work focuses on numerical simulations of flows in blade internal cooling system. Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) approaches are compared in a typical blade cooling related problem. The case is a straight rib-roughened channel with high blockage ratio, computed and compared for both a periodic and full spatial domains. The configuration was measured at the Von Karman Institute (VKI) using Particle Image Velocimetry (PIV) in near gas turbine operating conditions. Results show that RANS models used fail to predict the full evolution of the flow within the channels where massive separation and large scale unsteady features are evidenced. In contrast LES succeeds in reproducing these complex flow motions and both mean and fluctuating components are clearly improved in the channels and in the near wall region. Periodic computations are gauged against the spatial computational domain and results on the heat transfer problem are addressed.


2012 ◽  
Vol 249-250 ◽  
pp. 517-522 ◽  
Author(s):  
Yu Long Lei ◽  
Jie Tao Wen ◽  
Xing Zhong Li ◽  
Cheng Yang

In order to evaluate the efficacy of grooves on cooling performance of wet clutch, a numerical analysis based on the computational fluid dynamics (CFD) code FLUENT is presented in this study. This analysis is based on the numerical solution of the three-dimensional Navier-Stokes equation, coupled with the energy equation in the flow and the heat conduction equations in the friction material and the core disk. The turbulence characteristics were predicted using RNGk-ε model. The flow field and temperature distributions in radial grooves are obtained. It is shown that radial grooves possess the highest heat exchange performance at the entrance and is not linear distribution in the radial direction and cooling oil flow has a little effect on the highest temperature of friction plate. With the developed analysis method, it is possible to easily and quickly investigate the heat transfer behaviour of wet cluth with groove patterns.


Author(s):  
M. Cipolla

A typical industrial application of high temperature pumps involves handling of fluids up to 400 °C. This is critical for pump bearing housing, where thermal dissipation is not effective due to geometric configuration. Therefore, without any external cooling system, bearings and lubricating oil temperatures can exceed allowable values prescribed by both API 610 Reference Standard [1] and bearing manufacturer [2]. Particularly, for a overhung pump, when pumped fluid temperature is above 200 °C, external cooling system is necessary and water is usually used for this purpose. Consequently, water availability must be taken into account when considering pump’s location, which is particularly difficult in desert areas. From these considerations was the idea to enhance the heat transfer of the pump support, in order to avoid any need of cooling water. The problem has been dealt with numerical analysis and experimental tests. First, we have considered the original support in the most critical situation, the stand-by condition, where no forced convection (fan) is effective. From the results pertaining to currently used support, we have got the hints to improve heat transfer by a full redesign. Finally an experimental validation has been set up. The measures gained allow us to validate hypothesis taken into consideration in the numerical simulation.


2019 ◽  
Vol 254 ◽  
pp. 02023
Author(s):  
Marcin Kubiak

This work concerns numerical modelling and computer simulations of temperature field and phase transformations during Yb:YAG laser heating of sheets made of S355 steel. The distribution of laser power emitted by Trumpf laser head D70 is used in the analysis. The heat source is modelled on the basis of interpolation algorithms using geostatistical kriging method. Coupled heat transfer and fluid flow in the fusion zone are described respectively by transient heat transfer equation with convective term and Navier-Stokes equation. The kinetics of phase transformations and volumetric fractions of arising phases are obtained on the basis of Johnson-Mehl-Avrami (JMA) and Koistinen-Marburger (KM) models. Continuous Heating Transformation (CHT) diagram is used for heating process and Continuous Cooling Transformation (CCT) diagram is used for heated steel with the decomposition of final volume fractions of phases transformed form austenite dependant on cooling rates.


Sign in / Sign up

Export Citation Format

Share Document