Differential operators and Higher Specht polynomials
Abstract In this note, we study the action of the rational quantum Calogero-Moser system on polynomials rings. This a continuation of our paper [Ibrahim Nonkan 2021 J. Phys.: Conf. Ser. 1730 012129] in which we deal with the polynomial representation of the ring of invariant differential operators. Using the higher Specht polynomials we give a detailed description of the actions of the Weyl algebra associated with the ring of the symmetric polynomial C[x 1,..., xn]Sn on the polynomial ring C[x 1,..., xn ]. In fact, we show that its irreducible submodules over the ring of differential operators invariant under the symmetric group are its submodules generated by higher Specht polynomials over the ring of the symmetric polynomials. We end up studying the polynomial representation of the ring of differential operators invariant under the actions of products of symmetric groups by giving the generators of its simple components, thus we give a differential structure to the higher Specht polynomials.