scholarly journals Differential operators and Higher Specht polynomials

2021 ◽  
Vol 2090 (1) ◽  
pp. 012096
Author(s):  
Ibrahim Nonkané ◽  
Léonard Todjihounde

Abstract In this note, we study the action of the rational quantum Calogero-Moser system on polynomials rings. This a continuation of our paper [Ibrahim Nonkan 2021 J. Phys.: Conf. Ser. 1730 012129] in which we deal with the polynomial representation of the ring of invariant differential operators. Using the higher Specht polynomials we give a detailed description of the actions of the Weyl algebra associated with the ring of the symmetric polynomial C[x 1,..., xn]Sn on the polynomial ring C[x 1,..., xn ]. In fact, we show that its irreducible submodules over the ring of differential operators invariant under the symmetric group are its submodules generated by higher Specht polynomials over the ring of the symmetric polynomials. We end up studying the polynomial representation of the ring of differential operators invariant under the actions of products of symmetric groups by giving the generators of its simple components, thus we give a differential structure to the higher Specht polynomials.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012097
Author(s):  
Ibrahim Nonkané ◽  
M. Latévi Lawson

Abstract In this note, we study the polynomial representation of the quantum Olshanetsky-Perelomov system for a finite reflection group W of type Bn. We endowed the polynomial ring C[x 1,..., xn ] with a structure of module over the Weyl algebra associated with the ring C[x 1,..., xn]W of invariant polynomials under a reflections group W of type Bn . Then we study the polynomials representation of the ring of invariant differential operators under the reflections group W. We make use of the theory of representation of groups namely the higher Specht polynomials associated with the reflection group W to yield a decomposition of that structure by providing explicitly the generators of its simple components.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012098
Author(s):  
Ibrahim Nonkané ◽  
Latévi M. Lawson

Abstract In this note, we study the actions of rational quantum Olshanetsky-Perelomov systems for finite reflections groups of type D n . we endowed the polynomial ring C[x 1,..., xn ] with a differential structure by using directly the action of the Weyl algebra associated with the ring C[x 1,..., xn ] W of invariant polynomials under the reflections groups W after a localization. Then we study the polynomials representation of the ring of invariant differential operators under the reflections groups. We use the higher Specht polynomials associated with the representation of the reflections group W to exhibit the generators of its simple components.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950237
Author(s):  
Bartłomiej Pawlik

A diagonal base of a Sylow 2-subgroup [Formula: see text] of symmetric group [Formula: see text] is a minimal generating set of this subgroup consisting of elements with only one nonzero coordinate in the polynomial representation. For different diagonal bases, Cayley graphs over [Formula: see text] may have different girths (i.e. minimal lengths of cycles). In this paper, all possible values of girths of Cayley graphs over [Formula: see text] with diagonal bases are calculated. A criterion for whenever such Cayley graph has girth equal to 4 is presented.


2015 ◽  
Vol 58 (3) ◽  
pp. 543-580
Author(s):  
V. V. Bavula

AbstractThe algebra of one-sided inverses of a polynomial algebra Pn in n variables is obtained from Pn by adding commuting left (but not two-sided) inverses of the canonical generators of the algebra Pn. The algebra is isomorphic to the algebra of scalar integro-differential operators provided that char(K) = 0. Ignoring the non-Noetherian property, the algebra belongs to a family of algebras like the nth Weyl algebra An and the polynomial algebra P2n. Explicit generators are found for the group Gn of automorphisms of the algebra and for the group of units of (both groups are huge). An analogue of the Jacobian homomorphism AutK-alg (Pn) → K* is introduced for the group Gn (notice that the algebra is non-commutative and neither left nor right Noetherian). The polynomial Jacobian homomorphism is unique. Its analogue is also unique for n > 2 but for n = 1, 2 there are exactly two of them. The proof is based on the following theorem that is proved in the paper:


Sign in / Sign up

Export Citation Format

Share Document