scholarly journals On the satellite attitude determination using simple environmental models and sensor data

2021 ◽  
Vol 2090 (1) ◽  
pp. 012116
Author(s):  
Angel Porras-Hermoso ◽  
Javier Cubas ◽  
Santiago Pindado

Abstract Attitude determination represents a fundamental task for most of the spacecrafts. It relies on three basic aspects: 1) sensors selection, 2) relevant environmental conditions estimation, and 3) algorithms that relate the sensor measurements to the expected conditions in the reference frame. Each one has its own impact on the accuracy that the system can achieve. Besides, two factors stand out above the others in terms of accuracy: 1) sensor quality (calibration, range, etc), and 2) precision of the environmental models. The computation of the satellite attitude needs at least two independent measurements (magnetometers, solar sensors...), whit their corresponding simulated measurements in the reference frame. Nevertheless, the number of measurements can be reduced to one if the satellite attitude is constrained. This paper describes a procedure to calculate satellites’ attitude and the main environmental models used (Earth magnetic model, Sun position model, Albedo model), including orbit propagation. This methodology can be extended to measure the performance of a sensor if the satellite attitude can be derived from other measurements and satellite constrains. The methodology is checked with data from the UPMSat-2 mission (launched in September 2020 within the VEGA VV16 mission). This is a 50-kg satellite designed and developed at the Universidad Politécnica de Madrid (UPM).

2012 ◽  
Vol 220-223 ◽  
pp. 1917-1921
Author(s):  
Lin Zhao ◽  
Zhong Hua Su ◽  
Yong Hao

An attitude determination system has been designed for the geocentric pointing triaxial stabilized satellites which employ a continuously running inertial rate sensor in conjunction with sun sensor and earth sensor. Earth/sun sensor data are processed to generate corrections to satellite attitude, gyro constant drift and earth sensor drift bias estimates. An extended Kalman filter based on the attitude determination system is derived in this paper for the satellite using two earth sensors, a two-axis digit sun sensor as attitude sensors and a three-axis gyro for the angular velocity. A simulation model is developed to estimate the attitude determination performance. Simulation results show that precision attitude determination is achieved using the selected attitude hardware and algorithms.


1987 ◽  
Author(s):  
Robert L. Russell ◽  
Andrew J. D' Arcy

Author(s):  
Baojian Yang ◽  
Lu Cao ◽  
Dechao Ran ◽  
Bing Xiao

Due to unavoidable factors, heavy-tailed noise appears in satellite attitude estimation. Traditional Kalman filter is prone to performance degradation and even filtering divergence when facing non-Gaussian noise. The existing robust algorithms have limited accuracy. To improve the attitude determination accuracy under non-Gaussian noise, we use the centered error entropy (CEE) criterion to derive a new filter named centered error entropy Kalman filter (CEEKF). CEEKF is formed by maximizing the CEE cost function. In the CEEKF algorithm, the prior state values are transmitted the same as the classical Kalman filter, and the posterior states are calculated by the fixed-point iteration method. The CEE EKF (CEE-EKF) algorithm is also derived to improve filtering accuracy in the case of the nonlinear system. We also give the convergence conditions of the iteration algorithm and the computational complexity analysis of CEEKF. The results of the two simulation examples validate the robustness of the algorithm we presented.


Author(s):  
C. Le Cunff ◽  
E. Fontaine ◽  
F. Biolley

Fatigue due to environmental conditions is studied on a top-tensioned riser. The fatigue is due to two factors. First, the waves produce a displacement of the top of the riser, which excites the structure. Secondly, currents create vortices behind the structures. The phenomenon is then referred to as vortex-induced vibrations (VIV), whereby the vortices can lock onto a structural mode through the shedding frequency. In the present paper, we have two objectives. The first is to compare the fatigue estimates given either by a modal analysis or by Navier-Stokes calculations for a riser in a current. The second is to determine if studying the wave and current effects separately produces conservative results or if they must be studied together.


2016 ◽  
Vol 16 (8) ◽  
pp. 2260-2271 ◽  
Author(s):  
Agustin Garcia Saez ◽  
Jose M. Quero ◽  
Manuel Angulo Jerez

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8276
Author(s):  
Víctor Puente ◽  
Marta Folgueira

Very long baseline interferometry (VLBI) is the only technique in space geodesy that can determine directly the celestial pole offsets (CPO). In this paper, we make use of the CPO derived from global VLBI solutions to estimate empirical corrections to the main lunisolar nutation terms included in the IAU 2006/2000A precession–nutation model. In particular, we pay attention to two factors that affect the estimation of such corrections: the celestial reference frame used in the production of the global VLBI solutions and the stochastic model employed in the least-squares adjustment of the corrections. In both cases, we have found that the choice of these aspects has an effect of a few μas in the estimated corrections.


Sign in / Sign up

Export Citation Format

Share Document