Interaction of an electromagnetic E-wave with a thin conducting film between two dielectric media in the case of an anisotropic isoenergetic surface and impurity scattering
Abstract The coefficients of reflection, transmission and absorption are calculated in the framework of the kinetic approach, when an electromagnetic E-wave interacts with a thin conducting film located between two dielectric media. To account for the surface scattering of charge carriers is used a model of mirror-diffuse boundary conditions, assuming that the specularity coefficients of the upper and lower surfaces of the film differ from each other. The electromagnetic wave falls on the upper surface of the film at an arbitrary angle. The case of an anisotropic isoenergetic surface of a conductor having the form of a three-axis ellipsoid, one of the main axes of which is parallel to the magnetic field strength of the wave, and the other is perpendicular to the film surfaces, is considered. The impurity scattering of electrons (holes) is dominated in the volume of the conductor. The dependence of the absorption coefficient on the parameters of the isoenergetic surface of the conductor is analyzed.