A time-domain model-based method for the identification of multi-frequency signal parameters

2014 ◽  
Vol 9 (06) ◽  
pp. P06019-P06019
Author(s):  
Y Guo ◽  
J Tan
1988 ◽  
Vol 24 (15) ◽  
pp. 973 ◽  
Author(s):  
A. Ouslimani ◽  
G. Vernet ◽  
J.C. Henaux ◽  
P. Crozat ◽  
R. Adde

2021 ◽  
Vol 236 ◽  
pp. 109508
Author(s):  
Sang Woo Kim ◽  
Svein Sævik ◽  
Jie Wu ◽  
Bernt Johan Leira

2017 ◽  
Vol 68 ◽  
pp. 158-173 ◽  
Author(s):  
J.V. Ulveseter ◽  
S. Sævik ◽  
C.M. Larsen

Author(s):  
Marco Proverbio ◽  
François-Xavier Favre ◽  
Ian F. C. Smith

The goal of model-based structural identification is to find suitable values of parameters that affect structure behaviour. To this end, measurements are often compared with predictions of finiteelement models. Although residual minimization (RM) is a prominent methodology for structural identification, it provides wrong parameter identification when flawed model classes are adopted. Error-domain model falsification (EDMF) is an alternative methodology that helps identify candidate models – models that are compatible with behaviour measurements – among an initial model population. This study focuses on the comparison between RM and EDMF for the structural identification of a steel bridge in Exeter (UK). Advantages and limitations of both methodologies are discussed with reference to parameter identification and prognosis tasks such as quantification of reserve capacity. Results show that the employment of RM may lead to wrong identification and unsafe estimations of reserve capacity.


Sign in / Sign up

Export Citation Format

Share Document