A straightforward and miniature implementation method of postural synergies for replicating human grasp characteristics accurately and intuitively
Abstract The postural synergies have great potentials to replicate human grasp characteristics, simplify grasp control and reduce the number of hardware needed actuators. However, due to the complex mapping relationship and jagged transmission ratio, the implemented mechanisms are always too bulky and loose which greatly limits its application. For current solutions, the replicating accuracy of motion characteristics or control intuition are compromised, and hitherto no work reports the replicating errors in literatures. To overcome these limitations, we present a novel design framework to determine the actuation configuration, implemented scheme and physical parameters. In this way, the mechanism is miniaturized and can be compactly embedded in hand palm, a self-contained synergy robot hand that integrated with mechanism, sensors and suited electrical system is built. The experiments demonstrate that the robot hand can accurately replicate the motion characteristics of two primary synergies, keep the control intuition to simplify grasp control, perform a better anthropomorphic motion capability and grasp different objects with versatile grasp functionality.