scholarly journals Corrosion resistance study of grey cast iron implanted with C, N, Cr and Cu ions

Author(s):  
O Yu Usanova ◽  
L A Maryushin ◽  
A Yu Kazantsev ◽  
A I Dyukova
Author(s):  
A. A. Usol’tsev ◽  
N. A. Kozyrev ◽  
S. V. Knyazev ◽  
A. I. Kutsenko ◽  
A. R. Mikhno

The main process leading to the destruction of the cast elements of gas-collection bell of electrolyzer, made of grey cast iron, is the oxidation of iron by oxygen, SO2 gas and sulfur vapors to form magnetite, hematite and pyrrhotin. The simultaneous formation of iron oxides and sulfides does not prevent further corrosion, since scale is formed with a loose structure that does not have protective properties. Reducing the length of the interfacial boundaries inside the material of the cast enables to reduce the rate of corrosion destruction, which can be achieved by modifying the cast iron to change the shape of graphite inclusions, i.e. obtaining high-strength cast iron with a spherical shape of graphite inclusions. However, the obtaining spherical graphite in cast iron using magnesium modification does not exclude the access of aggressive gases to the surface of the products and the possibility of their diffusion along the grain boundaries. It was shown that alloying can be an alternative, which leads not only to the exclusion of lamellar secretions of graphite in the structure of cast iron, but also to the formation of surface oxide layers based on the alloying element preventing the corrosion. Alloying with chromium gives cast iron high abrasive resistance due to the presence of a carbide component in the structure, as well as corrosion resistance due to the alloying of the metal base, heat resistance due to increasing the electrochemical potential of the metal base and creating a strong neutral oxide film on the surface of the castings, heat resistance, etc. An experimental comparative analysis of the corrosion resistance of cast iron used for manufacturing of gas collecting bell of electrolyzers showed that chromic cast iron ЧХ3 has a higher corrosion resistance than high-strength cast iron with spherical graphite ВЧ50 and much higher than grey cast iron with lamellar graphite. However, chromic cast iron ЧХ3 has low casting properties, is very sensitive to the cooling rate and has a large heterogeneity in structure, which makes it difficult to use it for the manufacture of gas collecting bell of electrolyzers.


2020 ◽  
Author(s):  
Federico Bertasi ◽  
Bozena Dudzik ◽  
Alessandro Mancini ◽  
Marco Bandiera ◽  
Simone Biondo ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1876
Author(s):  
Pei-Hu Gao ◽  
Rui-Tao Fu ◽  
Bai-Yang Chen ◽  
Sheng-Cong Zeng ◽  
Bo Zhang ◽  
...  

High entropy alloy attracts great attention for its high thermal stability and corrosion resistance. A CoCrFeNiMn high-entropy alloy coating was deposited on grey cast iron through plasma transfer arc cladding. It formed fine acicular martensite near the grey cast iron, with columnar grains perpendicular to the interface between the grey cast iron substrate and the cladding layer as well as dendrite in the middle part of the coatings. Simple FCC solid solutions present in the coatings which were similar to the powder’s structure. The coating had a microhardness of 300 ± 21.5 HV0.2 when the cladding current was 80 A for the solid solution strengthening. The HEA coating had the highest corrosion potential of −0.253 V when the plasma current was 60 A, which was much higher than the grey cast iron’s corrosion potential of −0.708 V. Meanwhile, the coating had a much lower corrosion current density of 9.075 × 10−7 mA/cm2 than the grey cast iron’s 2.4825 × 10−6 mA/cm2, which reflected that the CoCrFeNiMn HEA coating had much better corrosion resistance and lower corrosion rate than the grey cast iron for single FCC solid solution phase and a relatively higher concentration of Cr in the grain boundaries than in the grains and this could lead to corrosion protection effects.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-929-C5-934 ◽  
Author(s):  
P. Millet ◽  
R. Schaller ◽  
W. Benoit

1987 ◽  
Vol 27 (3) ◽  
pp. 221-228 ◽  
Author(s):  
Lammia M. Al-Shama ◽  
Jalal Mohammed Saleh ◽  
Naema A. Hikmat

2014 ◽  
Vol 02 (05) ◽  
pp. 470-483 ◽  
Author(s):  
J. O. Agunsoye ◽  
S. A. Bello ◽  
S. B. Hassan ◽  
R. G. Adeyemo ◽  
J. M. Odii

Sign in / Sign up

Export Citation Format

Share Document