scholarly journals Pyroclastic Deposits Identification using Near-Surface Seismic Refraction Tomography in Rawa Dano Volcanic Complex, Banten, Indonesia

2021 ◽  
Vol 873 (1) ◽  
pp. 012062
Author(s):  
Maryadi Maryadi ◽  
Nanda Aminy Ilahi Bisgar ◽  
Luthfi Yufajjiru ◽  
Rifqi Rizqulloh ◽  
Ghozy El Fatih ◽  
...  

Abstract Rawa Dano is a caldera lake which resulted from Dano Purba Volcano’s massive eruption, and it produced a huge amount of pyroclastic deposits that typically formed complex volcaniclastic series. Due to the lack of information regarding the subsurface properties of Rawa Dano area, therefore in this study, a low-energy seismic refraction survey was carried out to identify the distribution of pyroclastic deposits resulted from intensive volcanic eruptions. The data were acquired from two lines in two different sites. Variations of longitudinal velocity in the seismic vertical cross-section suggest that there are more than one type of deposits existed in the area. The results show two main refractors which are related to the deposition of different facies. The seismic velocity shown in the upper part of the seismic tomography model indicates that the pyroclastic deposit has a great thickness. This finding suggests that the eruptions happened massively. By combining the results from both sites, it could be inferred that the preceding one is even bigger in magnitude. The result is in agreement with the earlier surface geological study, which explains a similar conclusion. This research demonstrates the capability of seismic refraction tomography to map the distribution and condition of volcanic deposits around Rawa Dano Volcanic Complex.

2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2019 ◽  
Vol 25 (3) ◽  
pp. 245-254
Author(s):  
Peter J. Hutchinson ◽  
Maggie H. Tsai

ABSTRACT Near-surface seismic refraction tomography imaged the basal contact of the Upper Cambrian silica-rich Mount Simon Formation with that of the underlying Precambrian granite in central Wisconsin. The discrimination between the Mount Simon and underlying non-conformable contact with Precambrian rocks was based upon a p-wave velocity of 1,700 m/s. Refraction tomography imaged deep, broad tidal channels within the Mount Simon consistent with the inference that Mount Simon was deposited in a high-energy near-shore, probably fluvial environment. The Mount Simon is an arenite that has high commercial value.


2020 ◽  
Author(s):  
remi valois ◽  
Nicole Schafer ◽  
Giulia De Pasquale ◽  
Gonzalo Navarro ◽  
Shelley MacDonell

<p>Rock glaciers play an important hydrological role in the semiarid Andes (SA; 27º-35ºS). They cover about three times the area of uncovered glaciers and they are an important contribution to streamflow when water is needed most, especially during dry years and in the late summer months. Their characteristics such as their extension in depth and their ice content is poorly known. Here, we present a case study of one active rock glacier and periglacial inactive geoform in Estero Derecho (~30˚S), in the upper Elqui River catchment, Chile. Three geophysical methods (ground-penetrating radar and electrical resistivity and seismic refraction tomography) were combined to detect the presence of ice and understand the internal structure of the landform. The results suggest that the combination of electrical resistivity and seismic velocity provide relevant information on ice presence and their geometry. Radargrams shows diffraction linked to boulders presence but some information regarding electromagnetic velocity could be extracted. These results strongly suggest that such landforms contain ice, are therefore important to include in future inventories and should be considered when evaluating the hydrological importance of a particular region.</p><p> </p>


Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1441-1446 ◽  
Author(s):  
P. N. Shive ◽  
T. Lowry ◽  
D. H. Easley ◽  
L. E. Borgman

A companion paper (this issue) describes a method for producing three‐dimensional simulations of physical properties for different geologic situations. Here we create a simulation for a particular case, which is a near‐surface (<80 ft deep) description of a karst environment. We simulate seismic velocity, density, resistivity, and the dielectric constant for this situation. We then conduct (in the computer) hypothetical geophysical surveys at the surface of the model. These surveys are seismic refraction, microgravity, dc resistivity, and ground‐probing radar. Physical properties appropriate for cavities are then entered in the model. Repeating the geophysical surveys over the model with cavities provides a convenient method of evaluating their potential for cavity detection. Anomalies produced by normal variations in physical properties may simulate or obscure anomalies from target features. More data about the correlation of physical properties, particularly in the horizontal directions, will be required to evaluate this problem properly.


2013 ◽  
Vol 99 ◽  
pp. 60-65 ◽  
Author(s):  
Steven D. Sloan ◽  
Jeffery J. Nolan ◽  
Seth W. Broadfoot ◽  
Jason R. McKenna ◽  
Owen M. Metheny

2019 ◽  
Vol 24 (1) ◽  
pp. 27-38
Author(s):  
B. Butchibabu ◽  
Prosanta K. Khan ◽  
P.C. Jha

Geophysical investigations were carried out for evaluation of damage and to assess the possible causes for repeated occurrence of damage at one of the buildings constructed for oil pumping in the northern part of India. Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) techniques were adopted for studying the subsurface of the area around the building with an objective of ascertaining the cause of damage. High resolution imaging was done using both the techniques in this investigation. ERT delineated the presence of low resistivity (2 ohm-m) water filled voids below the structures and mapped different subsurface layers such as sandy soil, clay and sandstone in the study area. SRT revealed P-wave velocity ( V P ) of the subsurface medium in the range of 400–3,400 m/s. Corresponding densities and S-wave velocities ( V S ) were determined based on Gardner's and Castagna's relationships. Subsequently, the V P , V S and the modulus values were used in estimating compressibility of soil and rock strata. Results showed near surface layers were characterized by high compressibility (26.673 × 10 −5 Pa −1 ), decreases with depth. This paper presents the details of the site, techniques used in the investigation and correlation of geophysical results with lithological information, and the subsequent analysis for understanding the distress in the subsurface of the study area.


Sign in / Sign up

Export Citation Format

Share Document