scholarly journals Arsenic speciation and sorption in acid mine drainage and the polluted water of the Kosva river basin, Russia

2022 ◽  
Vol 962 (1) ◽  
pp. 012050
Author(s):  
N F Fetisova

Abstract Acid mine drainage (AMD) of the abandoned coal mines of the Kizelovsky coal basin (the Urals, Russia) is one of the worst natural disasters in the region. Acidic sulphate waters with a high content of metals freely flow into the surface water bodies. Arsenic, found in elevated concentrations in AMD, is an element of concern due to its potential toxicity to humans and animals. The aim of this work is determination of chemical speciation of inorganic arsenic in AMD as well as the surface water and groundwater affected by mine drainage, and assessment the natural removal of As from mine drainage due to adsorption on precipitated hydrous ferric oxide (HFO). Geochemical speciation (PHREEQC) revealed that arsenic occurs in all water samples as As(V). Surface complexation model shows that, HFO induced by the natural attenuation process may remove 46–85% of total arsenic in AMD and only 28% in polluted groundwater (on average).

2016 ◽  
Vol 8 (40) ◽  
pp. 7420-7426 ◽  
Author(s):  
Resongles E. ◽  
Le Pape P. ◽  
Fernandez-Rojo L. ◽  
Morin G. ◽  
Delpoux S. ◽  
...  

As(iii)/As(v) ratio determined from orthophosphoric acid extraction/HPLC-ICP-MS matched XANES results, allowing routine measurement of As oxidation state in acid mine drainage precipitates.


Talanta ◽  
2006 ◽  
Vol 69 (5) ◽  
pp. 1182-1189 ◽  
Author(s):  
V. Oliveira ◽  
A.M. Sarmiento ◽  
J.L. Gómez-Ariza ◽  
J.M. Nieto ◽  
D. Sánchez-Rodas

2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tebogo M. Mokgehle ◽  
Nikita T. Tavengwa

AbstractAcid mine drainage is the reaction of surface water with sub-surface water located on sulfur bearing rocks, resulting in sulfuric acid. These highly acidic conditions result in leaching of non-biodegradeable heavy metals from rock which then accumulate in flora, posing a significant environmental hazard. Hence, reliable, cost effective remediation techniques are continuously sought after by researchers. A range of materials were examined as adsorbents in the extraction of heavy metal ions from acid mine drainage (AMD). However, these materials generally have moderate to poor adsorption capacities. To address this problem, researchers have recently turned to nano-sized materials to enhance the surface area of the adsorbent when in contact with the heavy metal solution. Lately, there have been developments in studying the surface chemistry of nano-engineered materials during adsorption, which involved alterations in the physical and chemical make-up of nanomaterials. The resultant surface engineered nanomaterials have been proven to show rapid adsorption rates and remarkable adsorption capacities for removal of a wide range of heavy metal contaminants in AMD compared to the unmodified nanomaterials. A brief overview of zeolites as adsorbents and the developent of nanosorbents to modernly applied magnetic sorbents and ion imprinted polymers will be discussed. This work provides researchers with thorough insight into the adsorption mechanism and performance of nanosorbents, and finds common ground between the past, present and future of these versatile materials.


Heliyon ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e00520 ◽  
Author(s):  
Mikael Larsson ◽  
Ataollah Nosrati ◽  
Simarpreet Kaur ◽  
Jochen Wagner ◽  
Ulf Baus ◽  
...  

2010 ◽  
Vol 269 (1-2) ◽  
pp. 100-112 ◽  
Author(s):  
Christopher H. Gammons ◽  
Terence E. Duaime ◽  
Stephen R. Parker ◽  
Simon R. Poulson ◽  
Patrick Kennelly

Sign in / Sign up

Export Citation Format

Share Document