scholarly journals Design and experimental structural analysis of a solar powered aircraft wing structure

2021 ◽  
Vol 1057 (1) ◽  
pp. 012027
Author(s):  
Govindu Sandhya ◽  
Vemireddy Sri Rishitha ◽  
S Sriram ◽  
VM Sreehari
2011 ◽  
Vol 105-107 ◽  
pp. 491-494
Author(s):  
Tie Jun Liu ◽  
Yong Zhang ◽  
Gang Li ◽  
Feng Hui Wang

In design of solar powered aircraft wing panel, vibration properties of wing panel should be considered, especially for the peak value of dynamic response. In this research, a viscoelastic damping layer is built for vibration isolation, wing panel finite element models of stiffened and no-stiffened structures base on fiber-reinforced laminates with damping layer in the middle are built. Natural frequency and displacement response are analyzed with different thickness of damping layer and structures. Result shows natural frequencies decrease as thickness increased, and that of laminates are lower than stiffened structure. The maximum displacement response value decreased when thickness increased and that of laminates is higher than structured with stiffer. The presented work is helpful for type selection and designing of solar powered aircraft wing panel.


2012 ◽  
Vol 532-533 ◽  
pp. 427-430
Author(s):  
Wei Tao Zhao ◽  
Tian Jun Yu ◽  
Yi Yang

One of the most significant components of aircraft design is the wing, the wings are the main lifting surfaces that support the airplane in flight. The structures of wings must have enough strength and rigidity to ensure the safe of the aircraft. Usually, the displacements of the structures are calculated by using finite element method. But it is very difficult to select a reasonable finite element model to approximate the actual structure. In this study, two models are adopted to calculate the displacements of the wing structure. The first is a model of rod and shear plate, the second is a model of beam and shell. The disadvantages and advantages of two models are discussed. As seen from the comparison with the test date, two models proposed are both feasible to analyze the wing structure.


2004 ◽  
Vol 41 (6) ◽  
pp. 1505-1520 ◽  
Author(s):  
Giulio Romeo ◽  
Giacomo Frulla ◽  
Enrico Cestino ◽  
Guido Corsino

Sign in / Sign up

Export Citation Format

Share Document