scholarly journals Vibration mitigation of high-rise buildings via tuned mass damper subjected to dynamic loads

2021 ◽  
Vol 1070 (1) ◽  
pp. 012031
Author(s):  
Mohammad Shamim Miah
2019 ◽  
Vol 9 (23) ◽  
pp. 5045 ◽  
Author(s):  
Qinhua Wang ◽  
Haoshuai Qiao ◽  
Dario De Domenico ◽  
Zhiwen Zhu ◽  
Zhuangning Xie

The beneficial mass-amplification effect induced by the inerter can be conveniently used in enhanced variants of the traditional Tuned Mass Damper (TMD), namely the Tuned Mass-Damper-Inerter (TMDI) and its special case of Tuned Inerter Damper (TID). In this paper, these inerter-based vibration absorbers are studied for mitigating the wind-induced response of high-rise buildings, with particular emphasis on a 340 m tall building analyzed as case study. To adopt a realistic wind-excitation model, the analysis is based on aerodynamic forces computed through experimental wind tunnel tests for a scaled prototype of the benchmark building, which accounts for the actual cross-section of the structure and the existing surrounding conditions. Mass and stiffness parameters are extracted from the finite element model of the primary structure. Performance-based optimization of the TMDI and the TID is carried out to find a good trade-off between displacement- and acceleration-response mitigation, with the installation floor being an explicit design variable in addition to frequency and damping ratio. The results corresponding to 24 different wind directions indicate that the best vibration mitigation is achieved with a lower installation floor of the TMDI/TID scheme than the topmost floor. The effects of different parameters of TMD, TMDI and TID on wind-induced displacement and acceleration responses and on the equivalent static wind loads (ESWLs) are comparatively evaluated. It is shown that the optimally designed TMDI/TID can achieve better wind-induced vibration mitigation than the TMD while allocating lower or null attached mass, especially in terms of acceleration response.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3319 ◽  
Author(s):  
Jijian Lian ◽  
Yue Zhao ◽  
Chong Lian ◽  
Haijun Wang ◽  
Xiaofeng Dong ◽  
...  

Offshore wind turbine (OWT) structures are highly sensitive to complex ambient excitations, especially extreme winds. To mitigate the vibrations of OWT structures under windstorm or typhoon conditions, a new eddy current with tuned mass damper (EC-TMD) system that combines the advantages of the eddy current damper and the tuned mass damper is proposed to install at the top of them. In the present study, the electromagnetic theory is applied to estimate the damping feature of the eddy current within the EC-TMD system. Then, the effectiveness of the EC-TMD system for vibration mitigation is demonstrated by small-scale tests. Furthermore, the EC-TMD system is used to alleviate structural vibrations of the OWT supported by composite bucket foundations (CBF) under extreme winds at the Xiangshui Wind Farm of China. It is found that the damping of the EC-TMD system can be ideally treated as having linear viscous damping characteristics, which are influenced by the gaps between the permanent magnets and the conductive materials as well as the permanent magnet layouts. Meanwhile, the RMS values of displacements of the OWT structure can be mitigated by 16% to 28%, and the acceleration can also be reduced significantly. Therefore, the excellent vibration-reducing performance of the EC-TMD system is confirmed, which provides meaningful guidance for application in the practical engineering of OWTs.


2018 ◽  
Vol 760 ◽  
pp. 272-277
Author(s):  
Vladimir Šána ◽  
Jiří Litoš ◽  
Zdeňka Říhová ◽  
Markéta Kočová

The submitted paper is focused on the design of Tuned Mass Damper in order to reduce excessive level of vibration. This device is designed to be active at the first natural frequency of the structure. Subsequently, the efficiency of the new dynamic system (structure-TMD) is verified for several types of time-dependent loads, which express swaying vandal, jumping vandal and moving pedestrian.


2015 ◽  
Vol 104 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Tomoki Yaguchi ◽  
Haruhiko Kurino ◽  
Naoki Kano ◽  
Takeshi Nakai ◽  
Ryusuke Fukuda

Author(s):  
S Pourzeynali ◽  
S Salimi

In engineering applications, many control devices have been developed to reduce the vibrations of structures. Active tuned mass damper system is one of these devices, which is a combination of a passive tuned mass damper system and an actuator to produce a control force. The main objective of this paper is to present a practical procedure for both deterministic and probabilistic design of the active tuned mass damper control system using multi-objective genetic algorithms to mitigate high-rise building responses. For this purpose, extensive numerical analyses have been performed, and optimal robust results of the active tuned mass damper design parameters with their effectiveness in reducing the example building responses have been presented. Uncertainties, which may exist in the system, have been taken into account using a robust design optimization procedure. The stiffness matrix and damping ratio of the building are considered as uncertain random variables; and using the well-known beta distribution, 50 pairs of these variables are generated. This resulted in 50 buildings with different stiffness matrices and damping ratios. These simulated buildings are used to evaluate robust optimal values of the active tuned mass damper design parameters. Four non-commensurable objective functions, namely maximum displacement, maximum velocity, maximum acceleration of each floor of the building, and active control force produced by the actuator are considered, and a fast and elitist non-dominated sorting genetic algorithm approach is used to find a set of pareto-optimal solutions.


Sign in / Sign up

Export Citation Format

Share Document