scholarly journals Effect of Holding Time and Cooling Media on Heat Treatment Process to Gear Motor Indopart Hardness

2021 ◽  
Vol 1125 (1) ◽  
pp. 012116
Author(s):  
Klemens A. Rahangmetan ◽  
Cipto ◽  
Christian W. Wullur ◽  
D Parenden ◽  
Farid Sariman
2014 ◽  
Vol 670-671 ◽  
pp. 201-204 ◽  
Author(s):  
Yu Xi Guo ◽  
Yi He Zhang ◽  
Hong Wei Huang ◽  
Pan Hu

Lightweight glass ceramic foams have been prepared from a mixture of solid wastes, namely 40 wt-% red mud and 60 wt-% fly ash. In this work, we illustrate the effects of variables in heat treatment process, including the sintering temperature and the holding time, on the quality of the foams. The reduction of sintering temperature as well as the holding time, was found to limit the coalescence and improve the apparent density and the compressive strength.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 420 ◽  
Author(s):  
Shuang Nie ◽  
Bingyang Gao ◽  
Xuejian Wang ◽  
Zhiqiang Cao ◽  
Enyu Guo ◽  
...  

A semi-solid microstructure of Mg–10Zn–6.8Gd–4Y alloys is acquired via an isothermal heat treatment process, and the effects of the holding time on the microstructure evolution of Mg–10Zn–6.8Gd–4Y alloys are investigated. The results show that the microstructure of the cast alloy is composed of primary α-Mg dendritic grains with a eutectic structure (W-phase and eutectic Mg) distributed at the grain boundaries. The primary α-Mg dendritic grains grow in size with increasing holding time, and they tend to grow into more globular structures in the initial stage; they then become a bit more dendritic, as small branches grow from the grain boundaries after holding the sample at 580 °C for 10 min. Meanwhile, the interdiffusion of magnesium atoms within the eutectic region, and between the primary α-Mg and eutectic structure, leads to the formation of fine and relatively globular eutectic Mg grains in the eutectic structure after holding for 10 min. The eutectic Mg grains begin to grow, coarsen, coalesce, or be swallowed by the surrounding primary grains, causing fluctuations of the general grain size. Over the whole isothermal heat treatment process, two mechanisms—coalescence and Ostwald ripening—dominate the grain coarsening.


2013 ◽  
Vol 845 ◽  
pp. 408-411
Author(s):  
M.S. Adenan ◽  
M.N. Berhan ◽  
E. Haruman

An approach has been made in developing hybrid heat treatment process for improvement of surface properties of duplex stainless steel (DSS). The process was performed using horizontal tube furnace at temperature of 450° C at holding time of 4, 8, 16 and 30 hours. Carbon and nitrogen elements were simultaneously introduced onto the surface of DSS with a ratio of 5% CH4 + 25% NH3 + 70% N2. The microstructure, phase analysis, surface hardness and hardness profile were systematically assessed. Hybrid heat treatment process managed to produce diffusional layer, where longer holding time had increased the thickness of the layer and improved the surface hardness. Expanded austenite phase has been formed at specimens 8, 16 and 30 hours. Longer holding time however gradually diffused Cr2N at the ferrite grains at the substrates. From the process, it can be concluded that low temperature hybrid heat treatment be able to improve the surface hardness of DSS however concern on holding time must be highly considered.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Yusuf Yusuf ◽  
Asep Ruchiyat ◽  
Muh Anhar

Steel is the material most widely used in the industry. To avoid wear and tear on steel, it is necessary to do heat treatment to improve the mechanical properties of the steel according to its application in the field. The increase in hardenability in metals can be determined by doing a hardenability test, namely the Jominy test method. The Jominy test is a method to determine the hardness value of metal using ASTM standards. This research was conducted with varying the distance of the nozzle of the sprayer to the lower end of the specimen, namely 10 mm, 12.5 mm, and 14 mm with a long spraying time of 15 minutes. The heat treatment process at temperature of 780oC and 90 minutes holding time. The averagehardness value of specimen number one (10 mm spraying distance) is 45.43 kgf, specimen number two (12.5 mm spraying distance) is 45.68 kgf, and specimen number three (14 mm spraying distance) is 44.31 kgf. The highest hardness value was specimen number two, there was an increase of 1.87 kgf (4.02%), according to ASTM standards where the spraying distance was 12.5 mm.Keywords: Steel, spraying distance, Jominy test.


2021 ◽  
Vol 3 (1) ◽  
pp. 31-38
Author(s):  
Alfian Siswara Arlingga ◽  
Somawardi - ◽  
Sugianto -

This study used an experimental method, in the form of the heat treatment hardening  930⁰C with the variations in the cooling media of the coconut water, table salt water, mineral waterwater, coolant radiator, and dromus water and variations in temperatures of tempering 200⁰C, 420⁰C, and 600⁰C, the specimens were cylindrical in diameter 25 mm and 20 mm in length, this study aims to determine the optimum hardness value of S45C steel specimens due to the heat treatment process hardening-tempering. From the results of the study, there is the effect of hardening 930⁰C there is the most optimal hardness value found in coconut water cooling media with the hardness level of 53.5 HRC. Under the influence of tempering 200⁰C there is the optimum hardness value found from the influence of mineral water cooling media with the hardness level of 50.7 HRC, while the influence of tempering 420⁰C there is the most optimal hardness value from the influence of mineral water cooling media with the hardness level of 41.8 HRC, and for tempering effect 600⁰C there is the most optimal hardness value available from the influence of the coconut water cooling media with the hardness level of 35.93 HRC.


ROTOR ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 43
Author(s):  
Jamaludhin Rais ◽  
Sunardi Sunardi ◽  
Erny Listijorini

In AISI 410 steel, the characteristic changes observed in this study were the value of hardness, and microstructure shape. Material samples heated on temperature 9000C and held for 45 minutes, with cooling medium variation used are water, used oil, and SAE 20W-50 oil. In the process, tempering the material sample returns heated on 3000C and held for 15 minutes, then cooled in the room open. The results showed that the microstructure formed in AISI 410 steel after heat treatment is martensite lath, ferrite and austenite. From the results has been obtained, that the quenching process with a variety of cooling media used and followed by the tempering process can affect the shape of the microstructure of AISI 410 steel, changes that occur are increase in the hardness value of the material. The results showed that the sample quenching water had the highest hardness is 378 HV, followed by quenching of SAE 20W-50 oil and used oil with grades of 377 and 362 HV, respectively. The increase in hardness value occurs due to changes in the micro structure that occur due to the heat treatment process. The increase in the value of hardness that occurred in the material was 143.7%.


2015 ◽  
Vol 1096 ◽  
pp. 319-324
Author(s):  
Xiao Jian Yu ◽  
Ya Lin Lu ◽  
Fu Xian Zhu ◽  
Xing Cheng Li

Automobile wheel of A356 alloy was cast by low pressure casting process. The effect of heat treatment process on microstructures and mechanical properties of A356 alloy cast was discussed. The results indicated that optimal parameters of heat treatment process for A356 alloy included solution temperature of 535°Cand holding time of 4.5hours, aging temperature of 145°Cand holding time of 4hours. Ultimate strength of A356 is 270MPa and elongation rate is 10%. Meanwhile, the microstructure has been apparently improved. The eutectic silicon particle became more spheroidal and distributed uniformly in matrix.


2013 ◽  
Vol 765-767 ◽  
pp. 197-201
Author(s):  
Xiang Yu Xu ◽  
Xue Min Wang

The influence of chemical composition, heat treatment process and microstructure on the properties of E40 heavy plate have been studied. After normalization process of thick TMCP plate for high strength hull steel, the structure is substantially more regular, but the strength decreases. The former microstructure consists of lath-like bainite, but after heat treatment it consists of ferrite and pearlite. The mechanical properties meet the requirement of GB 712 prescript. With cooling rate decreasing, grain size in normalizing samples increases gradually, and the strength decreases. With the holding time extending, grain growth is not obvious, and the strength decreases. The best normalizing temperature is 910 °C, and the best holding time is about100 min.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document