scholarly journals Nanoscale Neuromorphic Networks and Criticality: A Perspective

Author(s):  
Christopher S Dunham ◽  
Sam Lilak ◽  
Joel Hochstetter ◽  
Alon Loeffler ◽  
Ruomin Zhu ◽  
...  

Abstract Numerous studies suggest critical dynamics may play a role in information processing and task performance in biological systems. However, studying critical dynamics in these systems can be challenging due to many confounding biological variables that limit access to the physical processes underpinning critical dynamics. Here we offer a perspective on the use of abiotic, neuromorphic nanowire networks as a means to investigate critical dynamics in complex adaptive systems. Neuromorphic nanowire networks are composed of metallic nanowires and possess metal-insulator-metal junctions. These networks self-assemble into a highly interconnected, variable-density structure and exhibit nonlinear electrical switching properties and information processing capabilities. We highlight key dynamical characteristics observed in neuromorphic nanowire networks, including persistent fluctuations in conductivity with power law distributions, hysteresis, chaotic attractor dynamics, and avalanche criticality. We posit that neuromorphic nanowire networks can function effectively as tunable abiotic physical systems for studying critical dynamics and leveraging criticality for computation.

Author(s):  
Mauro Lombardi

In this chapter we outline the cyber-physical world we entered following the pervasive diffusion of information processing devices that are able to able to interact through exchanging information (cyber-physical systems). In this way ubiquitous computing and ubiquitous connectivity are changing how people think, act and produce. Indeed processes and products are becoming smart and connected on a potentially global level. The possibility of realizing a digital of everything representation from the subatomic level and nanoscale to the astronomical level implies that the physical world is surrounded and pervaded by a digital sphere that interacts with and influences it. Are we in a world like the one hypothesized by Borges' famous paradoxes of the 1: 1 map? The reality Is very different from the imagery Borges’s map: hyperstructures self-organize and emerge, global players act and influence the dynamics of complex adaptive systems.


2019 ◽  
Vol 2 (3) ◽  
pp. 24 ◽  
Author(s):  
Charles Roberto Telles

This research proposes and investigates an equation for productivity in hybrid workflows regarding its robustness towards the definition of workflows as a hybrid probabilistic systems. The proposed equation and its derivations were formulated through a theoretical framework about information theory, probabilities and complex adaptive systems. By defining a productivity equation for organism-machine-environment interactions, discrete and continuous variables that constitute the systems can be controlled by a mathematical framework where prediction and monitoring aspects of optimization are possible without the limitation of strict empirical methods.


Sign in / Sign up

Export Citation Format

Share Document