Multidrug-Resistant Salmonella enterica Isolated from Food Animal and Foodstuff May Also Be Less Susceptible to Heavy Metals

2019 ◽  
Vol 16 (3) ◽  
pp. 166-172 ◽  
Author(s):  
Rui Figueiredo ◽  
Roderick M. Card ◽  
Javier Nunez-Garcia ◽  
Nuno Mendonça ◽  
Gabriela Jorge da Silva ◽  
...  
Author(s):  
Dr. Manish Kulshrestha ◽  
Dr. Anjali Kulshrestha

INTRODUCTION: Enteric fever includes typhoid and paratyphoid fever. Peak incidence is seen in children 5–15 years of age; but in regions where the disease is highly endemic, as in India, children younger than 5 years of age may have the highest infection rates. There are about 22 million new typhoid cases occur each year. Young children in poor, resource limited areas, who make up the majority of the new cases and there is a mortality figures of 215,000 deaths annually. A sharp decline in the rates of complications and mortality due to typhoid fever is observed as a result of introduction of effective antibiotic therapy since 1950s. MDR-ST became endemic in many areas of Asia, including India soon after multidrug-resistant strains of Salmonella enterica serotype typhi (MDR-ST) that were resistant to all the three first-line drugs then in use, namely chloramphenicol, amoxycillin and co-trimoxazole emerged in early 1990s. MATERIAL AND METHODS: Only blood culture or bone marrow culture positive cases were included. The patients with culture isolated enteric fever were included in the study. Antimicrobial susceptibility testing was carried out by disk diffusion method using antibiotic discs. The analysis of the antimicrobial susceptibility was carried out as per CLSI interpretative guidelines. RESULTS: A total of 82 culture positive cases were included in the present study. 80 culture isolates were from blood culture and 2 from the bone marrow culture. Salmonella entericasubspecies enterica serovartyphi (S typhi) was isolated from 67 (81.70%) patients while Salmonella enterica subspecies entericaserovarparatyphi (S paratyphi A) was isolated from 13 (15.85%) cases and 2 (2.44%) were Salmonella enterica subspecies entericaserovarschottmuelleri (S paratyphi B). Of the 82 cases 65(79.3%) isolates were resistant to ciprofloxacin, 17 (20.7%) were resistant to nalidixic acid, one (1.2%) case each was resistant to Cefotaxime and ceftriaxone, 2 (2.4%) were resistant to chloramphenicol, 10 (12.2%) were resistant and to cotrimoxazole 3 (3.7%) were resistant. CONCLUSION: In a culture positive cases 65(79.3%) isolates were resistant to ciprofloxacin and 17 (20.7%) were resistant to nalidixic acid. Multidrug resistant isolates were 65(79.3%).


2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2012 ◽  
Vol 75 (4) ◽  
pp. 637-642 ◽  
Author(s):  
RONALD GAELEKOLWE SAMAXA ◽  
MAITSHWARELO IGNATIUS MATSHEKA ◽  
SUNUNGUKO WATA MPOLOKA ◽  
BERHANU ABEGAZ GASHE

The objective of the study was to provide baseline data on the prevalence and antimicrobial susceptibility of Salmonella in different types of raw meat sausages directly accessible to the consumers in Gaborone, Botswana. A total of 300 raw sausages comprising 79 beef, 78 pork, 72 chicken, and 71 mutton samples were concurrently analyzed for the presence of Salmonella using a conventional culture method and a validated PCR method. The PCR assay results were in full concordance with those of the conventional culture method for the detection of Salmonella. Sixty-five (21.7%) of 300 samples were positive for Salmonella by both the conventional culture method and PCR assay. Even though more chicken samples contained Salmonella than did any other sausage type, the difference in the presence of Salmonella among the four sausages types was not significant. Eleven serotypes were identified, and Salmonella enterica subsp. salamae II was most prevalent in all the sausage types. Beef sausages generally had higher mesophilic bacterial counts than did the other three sausage types. However, higher microbial counts were not reflective of the presence of salmonellae. Susceptibility of the Salmonella enterica serotypes to 20 antimicrobial agents was determined, and Salmonella Muenchen was resistant to the widest array of agents and was mostly isolated from chicken sausages. Regardless of the meat of origin, all 65 Salmonella isolates were resistant to at least four antimicrobial agents: amikacin, gentamicin, cefuroxime, and tombramycin. This resistance profile group was the most common in all four sausage types, comprising 90% of all Salmonella isolates from beef, 71% from pork, 63% from mutton, and 35% from chicken. These results suggest that raw sausages pose a risk of transmitting multidrug-resistant Salmonella isolates to consumers.


2013 ◽  
Vol 7 (12) ◽  
pp. 929-940 ◽  
Author(s):  
Amna Afzal ◽  
Yasra Sarwar ◽  
Aamir Ali ◽  
Abbas Maqbool ◽  
Muhammad Salman ◽  
...  

Introduction: This study aimed to determine the drug susceptibility patterns and genetic elements related to drug resistance in isolates of Salmonella enterica serovar Typhi (S. Typhi) from the Faisalabad region of Pakistan. Methodology: The drug resistance status of 80 isolates were evaluated by determining antimicrobial susceptibility, MICs, drug resistance genes involved, and the presence of integrons. Nalidixic acid resistance and reduced susceptibility to ciprofloxacin were also investigated by mutation screening of the gyrA, gyrB, parC, and parE genes. Results: Forty-seven (58.7%) isolates were multidrug resistant (MDR). Among the different resistance (R) types, the most commonly observed (13/80) was AmChStrTeSxtSmzTmp, which is the most frequent type observed in India and Pakistan. The most common drug resistant genes were blaTEM-1, cat, strA-strB, tetB, sul1, sul2, and dfrA7. Among the detected genes, only dfrA7 was found to be associated in the form of a single gene cassette within the class 1 integrons. Conclusions: MIC determination of currently used drugs revealed fourth-generation gatifloxacin as an effective drug against multidrug-resistant S. Typhi, but its clinical use is controversial. The Ser83→Phe substitution in gyrA was the predominant alteration in nalidixic acid-resistant isolates, exhibiting reduced susceptibility and increased MICs against ciprofloxacin. No mutations in gyrB, parC, or parE were detected in any isolate.


2012 ◽  
Vol 78 (9) ◽  
pp. 3087-3097 ◽  
Author(s):  
Orla Condell ◽  
Carol Iversen ◽  
Shane Cooney ◽  
Karen A. Power ◽  
Ciara Walsh ◽  
...  

ABSTRACTBiocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR)Salmonella entericastrains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds ofin vitroselection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure ofSalmonellastrains to an active biocidal compound, a high-level of tolerance was selected for a number ofSalmonellaserotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonicSalmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1191
Author(s):  
Yuliany Guillín ◽  
Marlon Cáceres ◽  
Rodrigo Torres ◽  
Elena Stashenko ◽  
Claudia Ortiz

The emergence of multidrug-resistant microorganisms represents a global challenge that has led to a search for new antimicrobial compounds. Essential oils (EOs) from medicinal aromatic plants are a potential alternative for conventional antibiotics. In this study, the antimicrobial and anti-biofilm potential of 15 EOs was evaluated on planktonic and biofilm-associated cells of Salmonella enterica serovar Enteritidis ATCC 13076 (S. enteritidis) and Salmonella enterica serovar Typhimurium ATCC 14028 (S. typhimurium). In total, 4 out of 15 EOs showed antimicrobial activity and 6 EOs showed anti-biofilm activity against both strains. The EO from the Lippia origanoides chemotype thymol-carvacrol II (LTC II) presented the lowest minimum inhibitory concentration (MIC50 = 0.37 mg mL−1) and minimum bactericidal concentration (MBC = 0.75 mg mL−1) values. This EO also presented the highest percentage of biofilm inhibition (>65%) on both microorganisms, which could be confirmed by scanning electron microscopy (SEM) images. Transcriptional analysis showed significant changes in the expression of the genes related to quorum sensing and the formation of the biofilm. EOs could inhibit the expression of genes involved in the quorum sensing mechanism (luxR, luxS, qseB, sdiA) and biofilm formation (csgA, csgB, csgD, flhD, fliZ, and motB), indicating their potential use as anti-biofilm antimicrobial agents. However, further studies are needed to elucidate the action mechanisms of essential oils on the bacterial cells under study.


2009 ◽  
Vol 3 (10) ◽  
pp. 753-761 ◽  
Author(s):  
Khalifa Sifaw Ghenghesh ◽  
Ezzedin Franka ◽  
Khaled Tawil ◽  
Momtaz Wasfy ◽  
Salwa F. Ahmed ◽  
...  

Typhoid fever is endemic in the Mediterranean North African countries (Morocco, Algeria, Tunisia, Libya, and Egypt) with an estimated incidence of 10-100 cases per 100,000 persons. Outbreaks caused by Salmonella enterica serovar Typhi are common and mainly due to the consumption of untreated or sewage-contaminated water. Salmonella enterica Paratyphi B is more commonly involved in nosocomial cases of enteric fever in North Africa than expected and leads to high mortality rates among infants with congenital anomalies. Prevalence among travellers returning from this region is low, with an estimate of less than one per 100,000. Although multidrug resistant strains of Salmonella Typhi and Paratyphi are prevalent in this region, the re-emergence of chloramphenicol- and ampicillin-susceptible strains has been observed. In order to better understand the epidemiology of enteric fever in the Mediterranean North African region, population-based studies are needed. These will assist the health authorities in the region in preventing and controlling this important disease.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
Ying-Tsong Chen ◽  
You-Wun Wang ◽  
Bo-Han Chen ◽  
Ru-Hsiou Teng ◽  
...  

ABSTRACT We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from cases of human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin, and the element could move into the phylogenetically distant species Vibrio cholerae via conjugation.


Sign in / Sign up

Export Citation Format

Share Document