The Role of Bovine Intraepithelial Leukocyte-Mediated Cytotoxicity in Enteric Antiviral Defense

1992 ◽  
Vol 5 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D.L. GODSON ◽  
M. CAMPOS ◽  
L.A. BABIUK
Keyword(s):  
PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e14639 ◽  
Author(s):  
Jagger J. W. Harvey ◽  
Mathew G. Lewsey ◽  
Kanu Patel ◽  
Jack Westwood ◽  
Susanne Heimstädt ◽  
...  
Keyword(s):  

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 16
Author(s):  
Katie F. Daughenbaugh ◽  
Alex J. McMenamin ◽  
Laura M. Brutscher ◽  
Fenali Parekh ◽  
Michelle L. Flenniken

Honey bee colony losses are influenced by multiple abiotic and biotic factors, including viruses. To investigate the effects of RNA viruses on honey bees, we infected bees with a model virus (Sindbis-GFP) in the presence or absence of double-stranded RNA (dsRNA). In honey bees, dsRNA is the substrate for sequence-specific RNA interference (RNAi)-mediated antiviral defense and is a trigger of sequence-independent\antiviral responses. Transcriptome sequencing identified more than 200 differentially expressed genes, including genes in the RNAi, Toll, Imd, JAK-STAT, and heat shock response pathways, and many uncharacterized genes. To confirm the virus limiting role of two genes (i.e., dicer and mf116383) in honey bees, we utilized RNAi to reduce their expression in vivo and determined that the virus abundance increased. To evaluate the role of the heat shock stress response in antiviral defense, bees were heat stressed post-virus infection and the virus abundance and gene expression were assessed. Heat-stressed bees had reduced virus levels and a greater expression of several heat shock protein encoding genes (hsps) compared to the controls. To determine if these genes are universally associated with antiviral defense, bees were infected with another model virus, Flock House virus (FHV), or deformed wing virus and the gene expression was assessed. The expression of dicer was greater in bees infected with either FHV or Sindbis-GFP compared to the mock-infected bees, but not in the deformed wing virus-infected bees. To further investigate honey bee antiviral defense mechanisms and elucidate the function of key genes (dicer, ago-2, mf116383, and hsps) at the cellular level, primary honey bee larval hemocytes were transfected with dsRNA or infected with the Lake Sinai virus 2 (LSV2). These studies indicate that mf116383 and hsps mediate dsRNA detection and that MF116383 is involved in limiting LSV2 infection. Together, these results further our understanding of honey bee antiviral defense, particularly dsRNA-mediated antiviral responses, at both the individual bee and cellular levels.


Cytokine ◽  
2010 ◽  
Vol 52 (1-2) ◽  
pp. 48 ◽  
Author(s):  
Markus Mordstein ◽  
Johanna Pott ◽  
Tanel Mahlakoiv ◽  
Eva Neugebauer ◽  
Vanessa Ditt ◽  
...  

2012 ◽  
Vol 12 (1) ◽  
pp. 229 ◽  
Author(s):  
Tetsu Sakamoto ◽  
Michihito Deguchi ◽  
Otávio JB Brustolini ◽  
Anésia A Santos ◽  
Fabyano F Silva ◽  
...  
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Yu ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Jueun Oh ◽  
Deok Jeong ◽  
...  

Inflammation is a complex biological response of tissues to harmful stimuli such as pathogens, cell damage, or irritants. Inflammation is considered to be a major cause of most chronic diseases, especially in more than 100 types of inflammatory diseases which include Alzheimer's disease, rheumatoid arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, hepatitis, and Parkinson's disease. Recently, an increasing number of studies have focused on inflammatory diseases. TBK1 is a serine/threonine-protein kinase which regulates antiviral defense, host-virus interaction, and immunity. It is ubiquitously expressed in mouse stomach, colon, thymus, and liver. Interestingly, high levels of active TBK1 have also been found to be associated with inflammatory diseases, indicating that TBK1 is closely related to inflammatory responses. Even though relatively few studies have addressed the functional roles of TBK1 relating to inflammation, this paper discusses some recent findings that support the critical role of TBK1 in inflammatory diseases and underlie the necessity of trials to develop useful remedies or therapeutics that target TBK1 for the treatment of inflammatory diseases.


Acta Naturae ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 34-46
Author(s):  
S. V. Razin ◽  
A. A. Gavrilov ◽  
O. V. Iarovaia

The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.


2021 ◽  
Vol 66 (1) ◽  
pp. 61-79
Author(s):  
Bryony C. Bonning ◽  
Maria-Carla Saleh

As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA–based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.


2020 ◽  
Vol 7 (1) ◽  
pp. 403-419 ◽  
Author(s):  
Meng Yang ◽  
Asigul Ismayil ◽  
Yule Liu

Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.


2005 ◽  
Vol 79 (24) ◽  
pp. 15209-15217 ◽  
Author(s):  
Feng Qu ◽  
Xiaohong Ye ◽  
Guichuan Hou ◽  
Shirley Sato ◽  
Thomas E. Clemente ◽  
...  

ABSTRACT SDE1/SGS2/RDR6, a putative RNA-dependent RNA polymerase (RdRP) from Arabidopsis thaliana, has previously been found to be indispensable for maintaining the posttranscriptional silencing of transgenes, but it is seemingly redundant for antiviral defense. To elucidate the antiviral role of this RdRP in a different host plant and to evaluate whether plant growth conditions affect its role, we down-regulated expression of the Nicotiana benthamiana homolog, NbRDR6, and examined the plants for altered susceptibility to various viruses at different growth temperatures. The results we describe here clearly show that plants with reduced expression of NbRDR6 were more susceptible to all viruses tested and that this effect was more pronounced at higher growth temperatures. Diminished expression of NbRDR6 also permitted efficient multiplication of tobacco mosaic virus in the shoot apices, leading to serious disruption with microRNA-mediated developmental regulation. Based on these results, we propose that NbRDR6 participates in the antiviral RNA silencing pathway that is stimulated by rising temperatures but suppressed by virus-encoded silencing suppressors. The relative strengths of these two factors, along with other plant defense components, critically influence the outcome of virus infections.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Julia Körholz ◽  
Nicole Richter ◽  
Jochen Schäfer ◽  
Catharina Schuetz ◽  
Joachim Roesler

Abstract Background Unlike infections with mycobacteria, reports of unusual viral infections in interferon-gamma-receptor (IFNγR) deficient patients are scarce. Therefore, discussion about increased susceptibility to viral infections in these patients is ongoing. Case presentation We describe a 51-year-old male with dominant partial interferon-gamma-receptor-1 (IFNγR1)-deficiency and recurrent Herpes simplex 2 meningoencephalitis as well as other viral reactivations since childhood. Conclusions This case further confirms an enhanced risk for viral disease in IFNγR-deficient patients and a role of interferon gamma for human antiviral defense.


Sign in / Sign up

Export Citation Format

Share Document