2002 ◽  
Vol 7 (8) ◽  
pp. 423-452
Author(s):  
Marcelo Montenegro

The higher order quasilinear elliptic equation−Δ(Δp(Δu))=f(x,u)subject to Dirichlet boundary conditions may have unique and regular positive solution. If the domain is a ball, we obtain a priori estimate to the radial solutions via blowup. Extensions to systems and general domains are also presented. The basic ingredients are the maximum principle, Moser iterative scheme, an eigenvalue problem, a priori estimates by rescalings, sub/supersolutions, and Krasnosel'skiĭ fixed point theorem.


2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.


2009 ◽  
Vol 9 (3) ◽  
Author(s):  
Paulo Rabelo

AbstractIn this paper minimax methods are employed to establish the existence of a bounded positive solution for semilinear elliptic equation of the form−∆u + V (x)u = P(x)|u|where the nonlinearity has supercritical growth and the potential can change sign. The solutions of the problem above are obtained by proving a priori estimates for solutions of a suitable auxiliary problem.


2018 ◽  
Vol 7 (4) ◽  
pp. 425-447 ◽  
Author(s):  
Lorenzo D’Ambrosio ◽  
Enzo Mitidieri

AbstractThe paper is concerned with a priori estimates of positive solutions of quasilinear elliptic systems of equations or inequalities in an open set of {\Omega\subset\mathbb{R}^{N}} associated to general continuous nonlinearities satisfying a local assumption near zero. As a consequence, in the case {\Omega=\mathbb{R}^{N}}, we obtain nonexistence theorems of positive solutions. No hypotheses on the solutions at infinity are assumed.


Sign in / Sign up

Export Citation Format

Share Document