scholarly journals Algebraic properties of Hermitian sums of squares, II

2021 ◽  
Author(s):  
Jennifer Brooks ◽  
Dusty Grundmeier ◽  
Hal Schenck
2019 ◽  
Vol 65 (4) ◽  
pp. 695-712
Author(s):  
Jennifer Brooks ◽  
Dusty Grundmeier

2021 ◽  
Vol 107 ◽  
pp. 67-105
Author(s):  
Elisabeth Gaar ◽  
Daniel Krenn ◽  
Susan Margulies ◽  
Angelika Wiegele

2019 ◽  
Vol 17 (1) ◽  
pp. 1538-1546
Author(s):  
Xin Zhou ◽  
Liangyun Chen ◽  
Yuan Chang

Abstract In this paper, we apply the concept of fuzzy sets to Novikov algebras, and introduce the concepts of L-fuzzy ideals and L-fuzzy subalgebras. We get a sufficient and neccessary condition such that an L-fuzzy subspace is an L-fuzzy ideal. Moreover, we show that the quotient algebra A/μ of the L-fuzzy ideal μ is isomorphic to the algebra A/Aμ of the non-fuzzy ideal Aμ. Finally, we discuss the algebraic properties of surjective homomorphic image and preimage of an L-fuzzy ideal.


1999 ◽  
Vol 6 (4) ◽  
pp. 299-306
Author(s):  
D. Bhattacharjee

Abstract In this paper we consider several constructions which from a given 𝐵-product *𝐵 lead to another one . We shall be interested in finding what algebraic properties of the ring 𝑅𝐵 = 〈𝐶ℕ, +, *𝐵〉 are shared also by the ring . In particular, for some constructions the rings 𝑅𝐵 and will be isomorphic and therefore have the same algebraic properties.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Shabir ◽  
Rimsha Mushtaq ◽  
Munazza Naz

In this paper, we focus on two main objectives. Firstly, we define some binary and unary operations on N-soft sets and study their algebraic properties. In unary operations, three different types of complements are studied. We prove De Morgan’s laws concerning top complements and for bottom complements for N-soft sets where N is fixed and provide a counterexample to show that De Morgan’s laws do not hold if we take different N. Then, we study different collections of N-soft sets which become idempotent commutative monoids and consequently show, that, these monoids give rise to hemirings of N-soft sets. Some of these hemirings are turned out as lattices. Finally, we show that the collection of all N-soft sets with full parameter set E and collection of all N-soft sets with parameter subset A are Stone Algebras. The second objective is to integrate the well-known technique of TOPSIS and N-soft set-based mathematical models from the real world. We discuss a hybrid model of multi-criteria decision-making combining the TOPSIS and N-soft sets and present an algorithm with implementation on the selection of the best model of laptop.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


Sign in / Sign up

Export Citation Format

Share Document