scholarly journals Id1 Overexpression Induces Tetraploidization and Multiple Abnormal Mitotic Phenotypes by Modulating Aurora A

2008 ◽  
Vol 19 (6) ◽  
pp. 2389-2401 ◽  
Author(s):  
Cornelia Man ◽  
Jack Rosa ◽  
Y. L. Yip ◽  
Annie Lai-Man Cheung ◽  
Y. L. Kwong ◽  
...  

The basic helix-loop-helix transcription factor, Id1, was shown to induce tetraploidy in telomerase-immortalized nasopharyngeal epithelial cells in this study. Using both transient and stable Id1-expressing cell models, multiple mitotic aberrations were detected, including centrosome amplification, binucleation, spindle defects, and microtubule perturbation. Many of these abnormal phenotypes have previously been reported in cells overexpressing Aurora A. Further experiments showed that Id1 could stabilize Aurora A, whereas knocking down Aurora A expression in Id1-expressing cells could rescue some of the mitotic defects. The mechanisms by which Aurora A could be modulated by Id1 were explored. DNA amplification of the Aurora A locus was not involved. Id1 could only weakly activate the transcriptional activity of the Aurora A promoter. We found that Id1 overexpression could affect Aurora A degradation, leading to its stabilization. Aurora A is normally degraded from mitosis exit by the APC/CCdh1-mediated proteasomal proteolysis pathway. Our results revealed that Id1 and Cdh1 are binding partners. The association of Id1 and Cdh1 was found to be dependent on the canonical destruction box motif of Id1, the increased binding of which may compete with the interaction between Cdh1 and Aurora A, leading to stabilization of Aurora A in Id1-overexpressing cells.

2004 ◽  
Vol 18 (4) ◽  
pp. 776-790 ◽  
Author(s):  
Joon-Young Kim ◽  
Khoi Chu ◽  
Han-Jong Kim ◽  
Hyun-A Seong ◽  
Ki-Cheol Park ◽  
...  

Abstract Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA binding domain (DBD) and represses the transcriptional activity of various nuclear receptors. In this study, we examined the novel cross talk between SHP and BETA2/NeuroD, a basic helix-loop-helix transcription factor. In vitro and in vivo protein interaction studies showed that SHP physically interacts with BETA2/NeuroD, but not its heterodimer partner E47. Moreover, confocal microscopic study and immunostaining results demonstrated that SHP colocalized with BETA2 in islets of mouse pancreas. SHP inhibited BETA2/NeuroD-dependent transactivation of an E-box reporter, whereas SHP was unable to repress the E47-mediated transactivation and the E-box mutant reporter activity. In addition, SHP repressed the BETA2-dependent activity of glucokinase and cyclin-dependent kinase inhibitor p21 gene promoters. Gel shift and in vitro protein competition assays indicated that SHP inhibits neither dimerization nor DNA binding of BETA2 and E47. Rather, SHP directly repressed BETA2 transcriptional activity and p300-enhanced BETA2/NeuroD transcriptional activity by inhibiting interaction between BETA2 and coactivator p300. We also showed that C-terminal repression domain within SHP is also required for BETA2 repression. However, inhibition of BETA2 activity was not observed by naturally occurring human SHP mutants that cannot interact with BETA2/NeuroD. Taken together, these results suggest that SHP acts as a novel corepressor for basic helix-loop-helix transcription factor BETA2/NeuroD by competing with coactivator p300 for binding to BETA2/NeuroD and by its direct transcriptional repression function.


2008 ◽  
Vol 28 (9) ◽  
pp. 2941-2951 ◽  
Author(s):  
Chang-Hoon Kim ◽  
Hannah Neiswender ◽  
Eun Joo Baik ◽  
Wen C. Xiong ◽  
Lin Mei

ABSTRACT Wnt regulation of muscle development is thought to be mediated by the β-catenin-TCF/LEF-dependent canonical pathway. Here we demonstrate that β-catenin, not TCF/LEF, is required for muscle differentiation. We showed that β-catenin interacts directly with MyoD, a basic helix-loop-helix transcription factor essential for muscle differentiation and enhances its binding to E box elements and transcriptional activity. MyoD-mediated transactivation is inhibited in muscle cells when β-catenin is deficient or the interaction between MyoD and β-catenin is disrupted. These results demonstrate that β-catenin is necessary for MyoD function, identifying MyoD as an effector in the Wnt canonical pathway.


2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


2007 ◽  
Vol 311 (2) ◽  
pp. 650-664 ◽  
Author(s):  
Judith K. Davie ◽  
Jang-Hyeon Cho ◽  
Eric Meadows ◽  
Jesse M. Flynn ◽  
Jennifer R. Knapp ◽  
...  

1994 ◽  
Vol 14 (12) ◽  
pp. 8343-8355
Author(s):  
M L Whitelaw ◽  
J A Gustafsson ◽  
L Poellinger

Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 319-331 ◽  
Author(s):  
P. Daubas ◽  
S. Tajbakhsh ◽  
J. Hadchouel ◽  
M. Primig ◽  
M. Buckingham

Myf5 is a key basic Helix-Loop-Helix transcription factor capable of converting many non-muscle cells into muscle. Together with MyoD it is essential for initiating the skeletal muscle programme in the embryo. We previously identified unexpected restricted domains of Myf5 transcription in the embryonic mouse brain, first revealed by Myf5-nlacZ(+/)(−) embryos (Tajbakhsh, S. and Buckingham, M. (1995) Development 121, 4077–4083). We have now further characterized these Myf5 expressing neurons. Retrograde labeling with diI, and the use of a transgenic mouse line expressing lacZ under the control of Myf5 regulatory sequences, show that Myf5 transcription provides a novel axonal marker of the medial longitudinal fasciculus (mlf) and the mammillotegmental tract (mtt), the earliest longitudinal tracts to be established in the embryonic mouse brain. Tracts projecting caudally from the developing olfactory system are also labelled. nlacZ and lacZ expression persist in the adult brain, in a few ventral domains such as the mammillary bodies of the hypothalamus and the interpeduncular nucleus, potentially derived from the embryonic structures where the Myf5 gene is transcribed. To investigate the role of Myf5 in the brain, we monitored Myf5 protein accumulation by immunofluorescence and immunoblotting in neurons transcribing the gene. Although Myf5 was detected in muscle myotomal cells, it was absent in neurons. This would account for the lack of myogenic conversion in brain structures and the absence of a neural phenotype in homozygous null mutants. RT-PCR experiments show that the splicing of Myf5 primary transcripts occurs correctly in neurons, suggesting that the lack of Myf5 protein accumulation is due to regulation at the level of mRNA translation or protein stability. In the embryonic neuroepithelium, Myf5 is transcribed in differentiated neurons after the expression of neural basic Helix-Loop-Helix transcription factors. The signalling molecules Wnt1 and Sonic hedgehog, implicated in the activation of Myf5 in myogenic progenitor cells in the somite, are also produced in the viscinity of the Myf5 expression domain in the mesencephalon. We show that cells expressing Wnt1 can activate neuronal Myf5-nlacZ gene expression in dissected head explants isolated from E9.5 embryos. Furthermore, the gene encoding the basic Helix-Loop-Helix transcription factor mSim1 is expressed in adjacent cells in both the somite and the brain, suggesting that signalling molecules necessary for the activation of mSim1 as well as Myf5 are present at these different sites in the embryo. This phenomenon may be widespread and it remains to be seen how many other potentially potent regulatory genes, in addition to Myf5, when activated do not accumulate protein at inappropriate sites in the embryo.


Sign in / Sign up

Export Citation Format

Share Document