Epistemic Church’s Thesis and Absolute Undecidability

2016 ◽  
pp. 254-272
Author(s):  
Marianna Antonutti Marfori ◽  
Leon Horsten
2000 ◽  
Vol 8 (3) ◽  
pp. 244-258 ◽  
Author(s):  
ROBERT BLACK

1987 ◽  
Vol 28 (4) ◽  
pp. 490-498 ◽  
Author(s):  
Stephen C. Kleene

1965 ◽  
Vol 30 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Hilary Putnam

The purpose of this paper is to present two groups of results which have turned out to have a surprisingly close interconnection. The first two results (Theorems 1 and 2) were inspired by the following question: we know what sets are “decidable” — namely, the recursive sets (according to Church's Thesis). But what happens if we modify the notion of a decision procedure by (1) allowing the procedure to “change its mind” any finite number of times (in terms of Turing Machines: we visualize the machine as being given an integer (or an n-tuple of integers) as input. The machine then “prints out” a finite sequence of “yesses” and “nos”. The last “yes” or “no” is always to be the correct answer.); and (2) we give up the requirement that it be possible to tell (effectively) if the computation has terminated? I.e., if the machine has most recently printed “yes”, then we know that the integer put in as input must be in the set unless the machine is going to change its mind; but we have no procedure for telling whether the machine will change its mind or not.The sets for which there exist decision procedures in this widened sense are decidable by “empirical” means — for, if we always “posit” that the most recently generated answer is correct, we will make a finite number of mistakes, but we will eventually get the correct answer. (Note, however, that even if we have gotten to the correct answer (the end of the finite sequence) we are never sure that we have the correct answer.)


2020 ◽  
pp. 239-275
Author(s):  
Jared Warren

This chapter addresses the second major challenge for the extension of conventionalism from logic to mathematics: the richness of mathematical truth. The chapter begins by distinguishing indeterminacy from pluralism and clarifying the crucial notion of open-endedness. It then critically discusses the two major strategies for securing arithmetical categoricity using open-endedness; one based on a collapse theorem, the other on a kind of anti-overspill idea. With this done, a new argument for the categoricity of arithmetic is then presented. In subsequent discussion, the philosophical importance of this categoricity result is called into question to some degree. The categoricity argument is then supplemented by an appeal to the infinitary omega rule, and an argument is given that beings like us can actually follow the omega rule without any violation of Church’s thesis. Finally, the chapter discusses the extension of this type of approach beyond arithmetic, to set theory and the rest of mathematics.


Sign in / Sign up

Export Citation Format

Share Document