scholarly journals A modified low-protein infant formula supports adequate growth in healthy, term infants: a randomized, double-blind, equivalence trial

2019 ◽  
Vol 111 (5) ◽  
pp. 962-974 ◽  
Author(s):  
Stefanie M P Kouwenhoven ◽  
Nadja Antl ◽  
Martijn J J Finken ◽  
Jos W R Twisk ◽  
Eline M van der Beek ◽  
...  

ABSTRACT Background A high protein intake in early life is associated with a risk of obesity later in life. The essential amino acid requirements of formula-fed infants have been reassessed recently, enabling a reduction in total protein content and thus in protein intake. Objectives We aimed to assess the safety of an infant formula with a modified amino acid profile and a modified low-protein (mLP) content in healthy term-born infants. Outcomes were compared with a specifically designed control (CTRL) infant formula. Methods In this double-blind, randomized controlled equivalence trial, infants received either mLP (1.7 g protein/100 kcal; n = 90) or CTRL formula (2.1 g protein/100 kcal; n = 88) from enrollment (age ≤ 45 d) to 6 mo of age. A breastfed group served as a reference (n = 67). Anthropometry and body composition were determined at baseline, 17 wk (including safety blood parameters), and 6 mo of age. The primary outcome was daily weight gain from enrollment up until the age of 17 wk (at an equivalence margin of ±3.0 g/d). Results Weight gain from baseline (mean ± SD age: 31 ± 9 d) up to the age of 17 wk was equivalent between the mLP and CTRL formula groups (27.9 and 28.8 g/d, respectively; difference: −0.86 g/d; 90% CI: −2.36, 0.63 g/d). No differences in other growth parameters, body composition, or in adverse events were observed. Urea was significantly lower in the mLP formula group than in the CTRL formula group (−0.74 mmol/L; 95% CI: −0.97, −0.51 mmol/L; P < 0.001). Growth rates, fat mass, fat-free mass, and several essential amino acids were significantly higher in both formula groups than in the breastfed reference group. Conclusions Feeding an infant formula with a modified amino acid profile and a lower protein content from an average age of 1 mo until the age of 6 mo is safe and supports an adequate growth, similar to that of infants consuming CTRL formula. This trial was registered at www.trialregister.nl as Trial NL4677.

Author(s):  
Stefanie M.P. Kouwenhoven ◽  
Nadja Antl ◽  
Martijn J.J. Finken ◽  
Jos W.R. Twisk ◽  
Eline M. van der Beek ◽  
...  

1990 ◽  
Vol 51 (3) ◽  
pp. 601-611 ◽  
Author(s):  
A. Bracher-Jakob ◽  
J. W. Blum

ABSTRACTIn earlier studies with pigs the P-adrenergic agonist Ro 16·8714 ((3-AG) enhanced the efficiency of nitrogen (N) retention. Therefore effects of Ro 16·8714 were studied on growth rate, body composition, N, fat and energy retention in pigs fed isoenergetically, but given different amounts of protein (112 or 138 g/kg diet) without (groups LP and NP) or with 60 mg Ro 16·8714 per kg diet (groups LPP and NPP) from 60 to 100 kg live weight. Weight gain (898, 927, 855 and 810 g/day in NP, NPp, LP and LPp) decreased, whereas food: gain ratio (2·94, 2·82, 3·04 and 3·24 kg/kg in NP, NPP, LP and LPP) was increased by low protein intake (P < 0·05) and both weight gain and food conversion were modified by the interaction (P × P) of protein intake and Ro 16·8714 (P < 0·05). Killing-out proportion (820, 830, 830 and 830 g/kg in groups NP, NPp, LP and LPP) was modified by protein intake and Ro 16·8714 (P < 0·05). Carcass growth rate (760, 814, 748 and 723 g/day in NP, NPP, LP and LPP) was modified by protein intake and by P × p (P < 0·05), while non-carcass growth rate (90, 77, 76 and 56 g/day in NP, NPP, LP and LPP) was changed by protein intake and by Ro 16·8714 (P < 0·05). Compared with NP, weights of kidneys (−0·025 kg), small intestine (−0·26 kg) and large intestine (−0·17 kg) were decreased by low protein feeding, and weights of heart, spleen and stomach decreased in response to Ro 16·8714 (-002, -0·02 and -0·06 kg; P < 0·05) while both low protein intake and Ro 16·8714 reduced liver weight (−0·12 and −0·23 kg, respectively; P < 0·05) and blood volume obtained at slaughter (-0·12 and -0·23 kg; P < 0·05). Carcass N (1813, 1970, 1786 and 1825 g in NP NPp, LP and LPP) increased in response to Ro 16-8714, but was reduced by low protein intake (P < 0·05), while noncarcass N (330, 309, 312 and 285 g in NP, NPp, LP and LPP) was decreased by both low protein intake and Ro 16-8714 (P < 0·01). Carcass and non-carcass fat (22·1, 19·9, 23·4 and 23·0 kg, respectively 1·51, 1·41, 1·59 and 1·68 kg in NP, NPp, LP and LPP) increased with low protein feeding (P < 0·05), but were not significantly influenced by Ro 16·8714. The efficiency of N retention (295, 363, 321 and 327 g/kg N retained: N intake in NP, NPp, LP and LPP) was enhanced by Ro 16·8714 (P > 0·05) whereas the efficiency of energy retention was not influenced by Ro 16·8714 and protein intake. In conclusion, an adequate intake of protein is necessary for optimum expression of many, but not all, effects of the P-adrenergic agonist Ro 16·8714.


2009 ◽  
Vol 101 (11) ◽  
pp. 1706-1713 ◽  
Author(s):  
Robert A. Gibson ◽  
Denis Barclay ◽  
Helen Marshall ◽  
Julie Moulin ◽  
Jean-Claude Maire ◽  
...  

Probiotics and long-chain PUFA (LC-PUFA) may be beneficial supplements for infants who are not breast-fed. The aim of the present study is to evaluate the safety of an infant formula containing the LC-PUFA DHA and arachidonic acid (AA) and the probiotic Bifidobacterium lactis by comparing the growth rate of infants fed the supplemented and unsupplemented formulas. One hundred and forty-two healthy, term infants were enrolled in a single-centre, randomised, double-blind, controlled, parallel-group trial, and allocated to receive either standard or probiotic and LC-PUFA-containing experimental formulas. The infants were fed with their assigned formulas for 7 months. The primary outcome (weight gain) and the secondary outcomes (length, head circumference and formula tolerance) were measured throughout the study. LC-PUFA status was assessed at 4 months of age and immune response to childhood vaccines was measured at 7 months of age. There was no significant difference in growth between the two groups. The 90 % CI for the difference in mean weight gain was − 0·08, 3·1 g in the intention-to-treat population and 0·1–3·8 g in the per protocol population, which lay within the predefined boundaries of equivalence, − 3·9–3·9. There were no significant differences in mean length and head circumference. DHA and AA concentrations were higher in infants in the experimental formula group compared with the control formula group. No influence of the supplements on the response to vaccines was observed. Growth characteristics of term infants fed the starter formula containing a probiotic and LC-PUFA were similar to standard formula-fed infants.


2021 ◽  
Vol 24 (1) ◽  
pp. 533-543
Author(s):  
Farhan Saeed ◽  
Azmat Ullah Khan ◽  
Zarina Mushtaq ◽  
Muhammad Afzaal ◽  
Bushra Niaz ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 493-507 ◽  
Author(s):  
Junyan Zhou ◽  
Yuming Wang ◽  
Xiangzhou Zeng ◽  
Tao Zhang ◽  
Peili Li ◽  
...  

This study investigated the effects of modulation of the amino acid profile on growth performance and gut health in weaned pigs fed an antibiotic-free, low-protein diet.


2009 ◽  
Vol 2009 ◽  
pp. 221-221
Author(s):  
F Alemi ◽  
M Shivazad ◽  
M Zaghari ◽  
H Moravej ◽  
A Mahdavi ◽  
...  

Lysine is the reference amino acid (AA) in the ideal AA ratios for chickens. Feed formulation based on digestible AA has been shown to increase weight gain and feed intake and improve body composition in broilers. Amino acid (AA) in most feed ingredients will not be totally digested, and knowledge of such efficiency is important in formulating diets and will be used to eliminate differences in absorption efficiencies due to feedstuff sources. This study was conducted to evaluate the growth performance and blood parameters of broilers fed various levels of DL (Digestible Lysine) supplemented in diets from day 1 to day 18.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 199 ◽  
Author(s):  
Iris Joye

Protein digestibility is currently a hot research topic and is of big interest to the food industry. Different scoring methods have been developed to describe protein quality. Cereal protein scores are typically low due to a suboptimal amino acid profile and low protein digestibility. Protein digestibility is a result of both external and internal factors. Examples of external factors are physical inaccessibility due to entrapment in e.g., intact cell structures and the presence of antinutritional factors. The main internal factors are the amino acid sequence of the proteins and protein folding and crosslinking. Processing of food is generally designed to increase the overall digestibility through affecting these external and internal factors. However, with proteins, processing may eventually also lead to a decrease in digestibility. In this review, protein digestion and digestibility are discussed with emphasis on the proteins of (pseudo)cereals.


2019 ◽  
Vol 109 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Casey M Rebholz ◽  
Zihe Zheng ◽  
Morgan E Grams ◽  
Lawrence J Appel ◽  
Mark J Sarnak ◽  
...  

ABSTRACT Background Accurate assessment of dietary intake is essential, but self-report of dietary intake is prone to measurement error and bias. Discovering metabolic consequences of diets with lower compared with higher protein intake could elucidate new, objective biomarkers of protein intake. Objectives The goal of this study was to identify serum metabolites associated with dietary protein intake. Methods Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography–tandem mass spectrometry quantification in serum specimens collected at the 12-mo follow-up visit in the Modification of Diet in Renal Disease (MDRD) Study from 482 participants in study A (glomerular filtration rate: 25–55 mL · min−1 · 1.73 m−2) and 192 participants in study B (glomerular filtration rate: 13–24 mL · min−1 · 1.73 m−2). We used multivariable linear regression to test for differences in log-transformed metabolites (outcome) according to randomly assigned dietary protein intervention groups (exposure). Statistical significance was assessed at the Bonferroni-corrected threshold: 0.05/1193 = 4.2 × 10−5. Results In study A, 130 metabolites (83 known from 28 distinct pathways, including 7 amino acid pathways; 47 unknown) were significantly different between participants randomly assigned to the low-protein diet compared with the moderate-protein diet. In study B, 32 metabolites (22 known from 8 distinct pathways, including 4 amino acid pathways; 10 unknown) were significantly different between participants randomly assigned to the very-low-protein diet compared with the low-protein diet. A total of 11 known metabolites were significantly associated with protein intake in the same direction in both studies A and B: 3-methylhistidine, N-acetyl-3-methylhistidine, xanthurenate, isovalerylcarnitine, creatine, kynurenate, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4), 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4), 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4), sulfate, and γ-glutamylalanine. Conclusions Among patients with chronic kidney disease, an untargeted serum metabolomics platform identified multiple pathways and metabolites associated with dietary protein intake. Further research is necessary to characterize unknown compounds and to examine these metabolites in association with dietary protein intake among individuals without kidney disease. This trial was registered at clinicaltrials.gov as NCT03202914.


2020 ◽  
Vol 51 (10) ◽  
pp. 3947-3958
Author(s):  
Débora Carvalho ◽  
Paula Reyes ◽  
Verónica Williner ◽  
María C. Mora ◽  
María F. Viozzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document