Development of standardized regression-based formulas to assess meaningful cognitive change in early Parkinson’s disease
Abstract Objective Longitudinal assessment of cognitive and emotional functioning in patients with Parkinson’s disease (PD) is helpful in tracking progression of the disease, developing treatment plans, evaluating outcomes, and educating patients and families. Determining whether change over time is meaningful in neurodegenerative conditions, such as PD, can be difficult as repeat assessment of neuropsychological functioning is impacted by factors outside of cognitive change. Regression-based prediction formulas are one method by which clinicians and researchers can determine whether an observed change is meaningful. The purpose of the current study was to develop and validate regression-based prediction models of cognitive and emotional test scores for participants with early-stage idiopathic PD and healthy controls (HC) enrolled in the Parkinson’s Progression Markers Initiative (PPMI). Methods Participants with de novo PD and HC were identified retrospectively from the PPMI archival database. Data from baseline testing and 12-month follow-up were utilized in this study. In total, 688 total participants were included in the present study (NPD = 508; NHC = 185). Subjects from both groups were randomly divided into development (70%) and validation (30%) subsets. Results Early-stage idiopathic PD patients and healthy controls were similar at baseline. Regression-based models were developed for all cognitive and self-report mood measures within both populations. Within the validation subset, the predicted and observed cognitive test scores did not significantly differ, except for semantic fluency. Conclusions The prediction models can serve as useful tools for researchers and clinicians to study clinically meaningful cognitive and mood change over time in PD.