scholarly journals dittoSeq: universal user-friendly single-cell and bulk RNA sequencing visualization toolkit

Author(s):  
Daniel G Bunis ◽  
Jared Andrews ◽  
Gabriela K Fragiadakis ◽  
Trevor D Burt ◽  
Marina Sirota

Abstract Summary A visualization suite for major forms of bulk and single-cell RNAseq data in R. dittoSeq is color blindness-friendly by default, robustly documented to power ease-of-use and allows highly customizable generation of both daily-use and publication-quality figures. Availability and implementation dittoSeq is an R package available through Bioconductor via an open source MIT license. Supplementary information Supplementary data are available at Bioinformatics online.

2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2291-2292 ◽  
Author(s):  
Saskia Freytag ◽  
Ryan Lister

Abstract Summary Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. Availability and implementation schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Batuhan Cakir ◽  
Martin Prete ◽  
Ni Huang ◽  
Stijn van Dongen ◽  
Pinar Pir ◽  
...  

Abstract In the last decade, single cell RNAseq (scRNAseq) datasets have grown in size from a single cell to millions of cells. Due to its high dimensionality, it is not always feasible to visualize scRNAseq data and share it in a scientific report or an article publication format. Recently, many interactive analysis and visualization tools have been developed to address this issue and facilitate knowledge transfer in the scientific community. In this study, we review several of the currently available scRNAseq visualization tools and benchmark the subset that allows to visualize the data on the web and share it with others. We consider the memory and time required to prepare datasets for sharing as the number of cells increases, and additionally review the user experience and features available in the web interface. To address the problem of format compatibility we have also developed a user-friendly R package, sceasy, which allows users to convert their own scRNAseq datasets into a specific data format for visualization.


2018 ◽  
Vol 35 (16) ◽  
pp. 2865-2867 ◽  
Author(s):  
Tallulah S Andrews ◽  
Martin Hemberg

Abstract Motivation Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. Results We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets. Availability and implementation M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Yu Amanda Guo ◽  
Mei Mei Chang ◽  
Anders Jacobsen Skanderup

AbstractSummaryRecurrence and clustering of somatic mutations (hotspots) in cancer genomes may indicate positive selection and involvement in tumorigenesis. MutSpot performs genome-wide inference of mutation hotspots in non-coding and regulatory DNA of cancer genomes. MutSpot performs feature selection across hundreds of epigenetic and sequence features followed by estimation of position and patient-specific background somatic mutation probabilities. MutSpot is user-friendly, works on a standard workstation, and scales to thousands of cancer genomes.Availability and implementationMutSpot is implemented as an R package and is available at https://github.com/skandlab/MutSpot/Supplementary informationSupplementary data are available at https://github.com/skandlab/MutSpot/


2018 ◽  
Author(s):  
Luca Alessandrì ◽  
Marco Beccuti ◽  
Maddalena Arigoni ◽  
Martina Olivero ◽  
Greta Romano ◽  
...  

AbstractSummarySingle-cell RNA sequencing has emerged as an essential tool to investigate cellular heterogeneity, and highlighting cell sub-population specific signatures. Nowadays, dedicated and user-friendly bioinformatics workflows are required to exploit the deconvolution of single-cells transcriptome. Furthermore, there is a growing need of bioinformatics workflows granting both functional, i.e. saving information about data and analysis parameters, and computation reproducibility, i.e. storing the real image of the computation environment. Here, we present rCASC a modular RNAseq analysis workflow allowing data analysis from counts generation to cell sub-population signatures identification, granting both functional and computation reproducibility.Availability and ImplementationrCASC is part of the reproducible bioinfomatics project. rCASC is a docker based application controlled by a R package available at https://github.com/kendomaniac/rCASC.Supplementary informationSupplementary data are available at rCASC github


Author(s):  
Emma H Gail ◽  
Anup D Shah ◽  
Ralf B Schittenhelm ◽  
Chen Davidovich

Abstract Summary Unbiased detection of protein–protein and protein–RNA interactions within ribonucleoprotein complexes are enabled through crosslinking followed by mass spectrometry. Yet, different methods detect different types of molecular interactions and therefore require the usage of different software packages with limited compatibility. We present crisscrosslinkeR, an R package that maps both protein–protein and protein–RNA interactions detected by different types of approaches for crosslinking with mass spectrometry. crisscrosslinkeR produces output files that are compatible with visualization using popular software packages for the generation of publication-quality figures. Availability and implementation crisscrosslinkeR is a free and open-source package, available through GitHub: github.com/egmg726/crisscrosslinker. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3288-3289
Author(s):  
Miroslav Kratochvíl ◽  
David Bednárek ◽  
Tomáš Sieger ◽  
Karel Fišer ◽  
Jiří Vondrášek

Abstract Summary ShinySOM offers a user-friendly interface for reproducible, high-throughput analysis of high-dimensional flow and mass cytometry data guided by self-organizing maps. The software implements a FlowSOM-style workflow, with improvements in performance, visualizations and data dissection possibilities. The outputs of the analysis include precise statistical information about the dissected samples, and R-compatible metadata useful for the batch processing of large sample volumes. Availability and implementation ShinySOM is free and open-source, available online at gitlab.com/exaexa/ShinySOM. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (15) ◽  
pp. 4291-4295
Author(s):  
Philipp Angerer ◽  
David S Fischer ◽  
Fabian J Theis ◽  
Antonio Scialdone ◽  
Carsten Marr

Abstract Motivation Dimensionality reduction is a key step in the analysis of single-cell RNA-sequencing data. It produces a low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear techniques are most suitable to handle the intrinsic complexity of large, heterogeneous single-cell data. However, with no linear relation between gene and embedding coordinate, there is no way to extract the identity of genes driving any cell’s position in the low-dimensional embedding, making it difficult to characterize the underlying biological processes. Results In this article, we introduce the concepts of local and global gene relevance to compute an equivalent of principal component analysis loadings for non-linear low-dimensional embeddings. Global gene relevance identifies drivers of the overall embedding, while local gene relevance identifies those of a defined sub-region. We apply our method to single-cell RNA-seq datasets from different experimental protocols and to different low-dimensional embedding techniques. This shows our method’s versatility to identify key genes for a variety of biological processes. Availability and implementation To ensure reproducibility and ease of use, our method is released as part of destiny 3.0, a popular R package for building diffusion maps from single-cell transcriptomic data. It is readily available through Bioconductor. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Batuhan Çakır ◽  
Martin Prete ◽  
Ni Huang ◽  
Stijn van Dongen ◽  
Pınar Pir ◽  
...  

AbstractIn the last decade, single cell RNAseq (scRNAseq) datasets have grown from a single cell to millions of cells. Due to its high dimensionality, the scRNAseq data contains a lot of valuable information, however, it is not always feasible to visualise and share it in a scientific report or an article publication format. Recently, a lot of interactive analysis and visualisation tools have been developed to address this issue and facilitate knowledge transfer in the scientific community. In this study, we review and compare several of the currently available analysis and visualisation tools and benchmark those that allow to visualize the scRNAseq data on the web and share it with others. To address the problem of format compatibility for most visualisation tools, we have also developed a user-friendly R package, sceasy, which allows users to convert their own scRNAseq datasets into a specific data format for visualisation.


Sign in / Sign up

Export Citation Format

Share Document