Second-order expansion of mean squared error matrix of generalized least squares estimator with estimated parameters

Biometrika ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 269-273 ◽  
Author(s):  
YASUYUKI TOYOOKA
1988 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
Wilfried R. Vanhonacker

Estimating autoregressive current effects models is not straightforward when observations are aggregated over time. The author evaluates a familiar iterative generalized least squares (IGLS) approach and contrasts it to a maximum likelihood (ML) approach. Analytic and numerical results suggest that (1) IGLS and ML provide good estimates for the response parameters in instances of positive serial correlation, (2) ML provides superior (in mean squared error) estimates for the serial correlation coefficient, and (3) IGLS might have difficulty in deriving parameter estimates in instances of negative serial correlation.


2002 ◽  
Vol 18 (5) ◽  
pp. 1121-1138 ◽  
Author(s):  
DONG WAN SHIN ◽  
MAN SUK OH

For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. A key condition for the asymptotic efficiency of the OLSE is that one multiplicity of a characteristic root of the regressor process is strictly greater than the multiplicities of the other roots. Under this condition, the covariance matrix Γ of the errors and the regressor matrix X are shown to satisfy a relationship (ΓX = XC + V for some matrix C) for V asymptotically dominated by X, which is analogous to the condition (ΓX = XC for some matrix C) for numerical equivalence of the OLSE and the GLSE.


1997 ◽  
Vol 13 (3) ◽  
pp. 406-429 ◽  
Author(s):  
Anoop Chaturvedi ◽  
Hikaru Hasegawa ◽  
Ajit Chaturvedi ◽  
Govind Shukla

In this present paper, considering a linear regression model with nonspherical disturbances, improved confidence sets for the regression coefficients vector are developed using the Stein rule estimators. We derive the large-sample approximations for the coverage probabilities and the expected volumes of the confidence sets based on the feasible generalized least-squares estimator and the Stein rule estimator and discuss their ranking.


Econometrics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Cheng Hsiao ◽  
Qi Li ◽  
Zhongwen Liang ◽  
Wei Xie

This paper considers methods of estimating a static correlated random coefficient model with panel data. We mainly focus on comparing two approaches of estimating unconditional mean of the coefficients for the correlated random coefficients models, the group mean estimator and the generalized least squares estimator. For the group mean estimator, we show that it achieves Chamberlain (1992) semi-parametric efficiency bound asymptotically. For the generalized least squares estimator, we show that when T is large, a generalized least squares estimator that ignores the correlation between the individual coefficients and regressors is asymptotically equivalent to the group mean estimator. In addition, we give conditions where the standard within estimator of the mean of the coefficients is consistent. Moreover, with additional assumptions on the known correlation pattern, we derive the asymptotic properties of panel least squares estimators. Simulations are used to examine the finite sample performances of different estimators.


Sign in / Sign up

Export Citation Format

Share Document