Tracing the origins of hybrids through history: monstrous cultivars and Napoléon Bonaparte’s exiled paper daisies (Asteraceae; Gnaphalieae)

Author(s):  
Timothy L Collins ◽  
Jeremy J Bruhl ◽  
Alexander N Schmidt-Lebuhn ◽  
Ian R H Telford ◽  
Rose L Andrew

Abstract Golden everlasting paper daisies (Xerochrysum, Gnaphalieae, Asteraceae) were some of the earliest Australian native plants to be cultivated in Europe. Reputedly a favourite of Napoléon Bonaparte and Empress Joséphine, X. bracteatum is thought to have been introduced to the island of St Helena in the South Atlantic during Napoléon’s exile there. Colourful cultivars were developed in the 1850s, and there is a widely held view that these were produced by crossing Xerochrysum with African or Asian Helichrysum spp. Recent molecular phylogenetic analyses and subtribal classification of Gnaphalieae cast doubt on this idea. Using single-nucleotide polymorphism (SNP) data, we looked for evidence of gene flow between modern cultivars, naturalized paper daisies from St Helena and four Xerochrysum spp. recorded in Europe in the 1800s. There was strong support for gene flow between cultivars and X. macranthum. Paper daisies from St Helena were genotypically congruent with X. bracteatum and showed no indications of ancestry from other species or from the cultivars, consistent with the continuous occurrence of naturalized paper daisies introduced by Joséphine and Napoléon. We also present new evidence for the origin of colourful Xerochrysum cultivars and hybridization of congeners in Europe from Australian collections.

Phytotaxa ◽  
2017 ◽  
Vol 319 (1) ◽  
pp. 84 ◽  
Author(s):  
XUDONG LIU ◽  
HUAN ZHU ◽  
BENWEN LIU ◽  
GUOXIANG LIU ◽  
ZHENGYU HU

The genus Nephrocytium Nägeli is a common member of phytoplankton communities that has a distinctive morphology. Its taxonomic position is traditionally considered to be within the family Oocystaceae (Trebouxiophyceae). However, research on its ultrastructure is rare, and the phylogenetic position has not yet been determined. In this study, two strains of Nephrocytium, N. agardhianum Nägeli and N. limneticum (G.M.Smith) G.M.Smith, were identified and successfully cultured in the laboratory. Morphological inspection by light and electron microscopy and molecular phylogenetic analyses were performed to explore the taxonomic position. Ultrastructure implied a likely irregular network of dense and fine ribs on the surface of the daughter cell wall that resembled that of the genus Chromochloris Kol & Chodat (Chromochloridaceae). Phylogenetic analyses revealed that Nephrocytium formed an independent lineage in the order Sphaeropleales (Chlorophyceae) with high support values and a close phylogenetic relationship with Chromochloris. Based on combined morphological, ultrastructural and phylogenetic data, we propose a re-classification of Nephrocytium into Sphaeropleales, sharing a close relationship with Chromochloris.


2015 ◽  
Vol 29 (6) ◽  
pp. 591 ◽  
Author(s):  
Marco Gebiola ◽  
Antonio P. Garonna ◽  
Umberto Bernardo ◽  
Sergey A. Belokobylskij

Doryctinae (Hymenoptera : Braconidae) is a large and diverse subfamily of parasitic wasps that has received much attention recently, with new species and genera described and phylogenies based on morphological and/or molecular data that have improved higher-level classification and species delimitation. However, the status of several genera is still unresolved, if not controversial. Here we focus on two related groups of such genera, Dendrosoter Wesmael–Caenopachys Foerster and Ecphylus Foerster–Sycosoter Picard & Lichtenstein. We integrated morphological and molecular (COI and 28S–D2 genes) evidence to highlight, by phylogenetic analyses (maximum likelihood and Bayesian) and a posteriori morphological examination, previously overlooked variation, which is here illustrated and discussed. Monophyly of Dendrosoter and Caenopachys and the presence of synapomorphic morphological characters support synonymy of Caenopachys under Dendrosoter. Low genetic differentiation and high variability for putatively diagnostic morphological characters found in both C. hartigii (Ratzeburg) and C. caenopachoides (Ruschka) supports synonymy of D. caenopachoides under D. hartigii, syn. nov. Morphological and molecular evidence together also indicate independent generic status for Sycosoter, stat. rev., which is here resurrected. This work represents a further advancement in the framework of the ongoing effort to improve systematics and classification of the subfamily Doryctinae.


2020 ◽  
Author(s):  
Laura A. Frost ◽  
Nataly O’Leary ◽  
Laura P. Lagomarsino ◽  
David C. Tank ◽  
Richard G. Olmstead

AbstractPremise of the studyTribe Citharexyleae comprises three genera: Baillonia, Citharexylum, and Rehdera. While there is good support for these genera as a clade, relationships between genera remain unresolved due to low sampling of the largest genus, Citharexylum. A molecular phylogenetic approach was taken to resolve intergeneric relationships in Citharexyleae and infrageneric relationships in Citharexylum.MethodsSeven chloroplast regions, two nuclear ribosomal spacers, and six low-copy nuclear loci were analyzed for 64 species of Citharexyleae. Phylogenetic analyses were conducted using maximum likelihood, Bayesian inference, and Bayesian multi-species coalescent approaches. Habit, presence/absence of thorns, inflorescence architecture, flower color, fruit color, and geography were examined to identify diagnostic characters for clades within Citharexylum.Key resultsIntergeneric relationships resolved Rehdera as sister to Citharexylum and Baillonia nested within Citharexylum. Two species, C. oleinum and C. tetramerum, fell outside of Citharexyleae close to tribe Duranteae. There is strong support for seven clades within Citharexylum, each characterized by a unique combination of geography, fruit color/maturation, and inflorescence architecture.ConclusionsBaillonia is included in Citharexylum; Rehdera is retained as a distinct genus. A subgeneric classification for Citharexylum is proposed.


Phytotaxa ◽  
2019 ◽  
Vol 424 (4) ◽  
pp. 253-261 ◽  
Author(s):  
TAI-MIN XU ◽  
YU-HUI CHEN ◽  
CHANG-LIN ZHAO

A new wood-inhabiting fungal species, Trechispora yunnanensis sp. nov., is proposed based on morphological characteristics and molecular phylogenetic analyses. The species is characterized by resupinate basidiomata, rigid and fragile up on drying, cream to pale greyish hymenial surface; a monomitic hyphal system with generative hyphae bearing clamp connections, IKI-, CB-; ellipsoid, hyaline, thick-walled, ornamented, IKI-, CB- basidiospores measuring as 7–8.5 × 5–5.5 µm. The internal transcribed spacer (ITS) and the large subunit (LSU) regions of nuclear ribosomal RNA gene sequences of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood (ML), maximum parsimony (MP) and bayesian inference methods (BPP). The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that T. yunnanensis formed a monophyletic lineage with a strong support (100% ML, 100% MP, 1.00 BPP) and was closely related to T. byssinella and T. laevis. Both morphological characteristics and results of molecular phylogenetic analyses confirmed the placement of the new species in Trechispora.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1049
Author(s):  
Huifeng Zhao ◽  
Ye Chen ◽  
Zitong Wang ◽  
Haifeng Chen ◽  
Yaoguang Qin

The complete mitochondrial genomes of two species of Chalcididae were newly sequenced: Brachymeria lasus and Haltichella nipponensis. Both circular mitogenomes are 15,147 and 15,334 bp in total length, respectively, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A+T-rich region. The nucleotide composition indicated a strong A/T bias. All PCGs of B. lasus and H. nipponensis began with the start codon ATD, except for B. lasus, which had an abnormal initiation codon TTG in ND1. Most PCGs of the two mitogenomes are terminated by a codon of TAR, and the remaining PCGs by the incomplete stop codon T or TA (ATP6, COX3, and ND4 in both species, with an extra CYTB in B. lasus). Except for trnS1 and trnF, all tRNAs can be folded into a typical clover structure. Both mitogenomes had similar control regions, and two repeat units of 135 bp were found in H. nipponensis. Phylogenetic analyses based on two datasets (PCG123 and PCG12) covering Chalcididae and nine families of Chalcidoidea were conducted using two methods (maximum likelihood and Bayesian inference); all the results support Mymaridae as the sister group of the remaining Chalcidoidea, with Chalcididae as the next successive group. Only analyses of PCG123 generated similar topologies of Mymaridae + (Chalcididae + (Agaonidae + remaining Chalcidoidea)) and provided one relative stable clade as Eulophidae + (Torymidae + (Aphelinidae + Trichogrammatidae)). Our mitogenomic phylogenetic results share one important similarity with earlier molecular phylogenetic efforts: strong support for the monophyly of many families, but a largely unresolved or unstable “backbone” of relationships among families.


2009 ◽  
Vol 34 (1) ◽  
pp. 182-197 ◽  
Author(s):  
David C. Tank ◽  
J. Mark Egger ◽  
Richard G. Olmstead

Recent molecular systematic research has indicated the need for a revised circumscription of generic boundaries in subtribe Castillejinae (tribe Pedicularideae, Orobanchaceae). Based on a well-resolved and well-supported phylogenetic hypothesis, we present a formal reclassification of the major lineages comprising the Castillejinae. Prior to this treatment, subtribe Castillejinae included Castilleja (ca. 190 spp.), Cordylanthus (18 spp.), Orthocarpus (9 spp.), Triphysaria (5 spp.), and the monotypic genera Clevelandia and Ophiocephalus. In the classification presented here, Orthocarpus and Triphysaria retain their current circumscriptions, Castilleja is expanded to include Clevelandia and Ophiocephalus, and Cordylanthus is split into three genera; a key to the genera as they are recognized here is provided. Two new combinations, Castilleja beldingii and Castilleja ophiocephala, are proposed within the expanded Castilleja. The concept of Cordylanthus is restricted to the 13 species formerly recognized as subg. Cordylanthus, while subg. Dicranostegia and subg. Hemistegia are elevated to genus level (Dicranostegia and Chloropyron, respectively). We resurrect the generic name Chloropyron for the halophytes previously recognized as subg. Hemistegia. Five new combinations are proposed for Chloropyron (Chloropyron maritimum subsp. canescens, Chloropyron maritimum subsp. palustre, Chloropyron molle subsp. hispidum, Chloropyron palmatum, and Chloropyron tecopense). In addition to the formal classification, we provide phylogenetic clade definitions for Castillejinae, each of the genera, and two additional clades that are not assigned formal ranks. Morphological characteristics used to recognize traditional groups are evaluated, and synapomorphies are discussed. Finally, the current infrageneric classifications for Castilleja and Cordylanthus are evaluated in light of the recent molecular phylogenetic analyses.


Nematology ◽  
2005 ◽  
Vol 7 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Yu He ◽  
Sergei A. Subbotin ◽  
Tatiana V. Rubtsova ◽  
Franco Lamberti ◽  
Derek J.F. Brown ◽  
...  

Abstract The Longidoridae are a group of ectoparasitic nematodes including two subfamilies and six genera with hundreds of species. Sequences of the D2 and D3 expansion region of the large subunit (LSU) rRNA nuclear gene were amplified and used to reconstruct the phylogeny of longidorids. Phylogenetic analyses with maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) were performed with one outgroup taxon and 62 longidorid sequences. Confidence of inferred clades was assessed by non-parametric bootstrapping for MP and Bayesian posterior probability for ML. All analyses placed Paralongidorus species as an inner group within the otherwise monophyletic genus Longidorus. The genus Xiphinema, except for X. americanum-group species, was placed as the sister group of Longidorus with strong support from the ML and BI analyses. The X. americanum-group was strongly supported as an exclusive clade to other genus Xiphinema species. The position of the Xiphidorus clade was not well resolved and the phylogenetic analyses did not support it as a sister group to Longidorus as previously inferred from morphology. Secondary structure models were constructed for the D2/D3 region of LSU rRNA for all studied species. It was found that sequence-based and structural morphometric rRNA phylogenies were incongruent.


2019 ◽  
Vol 94 ◽  
Author(s):  
S.V. Shchenkov ◽  
S.A. Denisova ◽  
G.A. Kremnev ◽  
A.A. Dobrovolskij

Abstract The phylogenetic position of most xiphidiocercariae from subgroups Cercariae virgulae and Cercariae microcotylae remains unknown or unclear, even at the family level. In this paper, we studied the morphology and molecular phylogeny of 15 microcotylous and virgulate cercariae (11 new and four previously described ones). Based on morphological and molecular data, we suggested five distinct morphological types of xiphidiocercariae, which are a practical alternative to Cercariae virgulae and Cercariae microcotylae subgroups. Four of these types correspond to actual digenean taxa (Microphallidae, Lecithodendriidae, Pleurogenidae and Prosthogonimidae), while the fifth is represented by Cercaria nigrospora Wergun, 1957, which we classified on the basis of molecular data for the first time. We reassessed the relative importance of morphological characters used for the classification of virgulate and microcotylous cercariae, and discussed the main evolutionary trends within xiphidiocercariae. Now stylet cercariae can be reliably placed into several sub-taxa of Microphalloidea on the basis of their morphological features.


Sign in / Sign up

Export Citation Format

Share Document