scholarly journals Reconfiguration of Directed Functional Connectivity Among Neurocognitive Networks with Aging: Considering the Role of Thalamo-Cortical Interactions

2020 ◽  
Author(s):  
Moumita Das ◽  
Vanshika Singh ◽  
Lucina Q Uddin ◽  
Arpan Banerjee ◽  
Dipanjan Roy

Abstract A complete picture of how subcortical nodes, such as the thalamus, exert directional influence on large-scale brain network interactions across age remains elusive. Using directed functional connectivity and weighted net causal outflow on resting-state fMRI data, we provide evidence of a comprehensive reorganization within and between neurocognitive networks (default mode: DMN, salience: SN, and central executive: CEN) associated with age and thalamocortical interactions. We hypothesize that thalamus subserves both modality-specific and integrative hub role in organizing causal weighted outflow among large-scale neurocognitive networks. To this end, we observe that within-network directed functional connectivity is driven by thalamus and progressively weakens with age. Secondly, we find that age-associated increase in between CEN- and DMN-directed functional connectivity is driven by both the SN and the thalamus. Furthermore, left and right thalami act as a causal integrative hub exhibiting substantial interactions with neurocognitive networks with aging and play a crucial role in reconfiguring network outflow. Notably, these results were largely replicated on an independent dataset of matched young and old individuals. Our findings strengthen the hypothesis that the thalamus is a key causal hub balancing both within- and between-network connectivity associated with age and maintenance of cognitive functioning with aging.

Neuroscience ◽  
2020 ◽  
Vol 425 ◽  
pp. 169-180 ◽  
Author(s):  
Xuewei Wang ◽  
Ru Wang ◽  
Fei Li ◽  
Qiang Lin ◽  
Xiaohu Zhao ◽  
...  

Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Charlotte J Stagg ◽  
Velicia Bachtiar ◽  
Ugwechi Amadi ◽  
Christel A Gudberg ◽  
Andrei S Ilie ◽  
...  

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies.


2019 ◽  
Author(s):  
Hannes Almgren ◽  
Frederik Van de Steen ◽  
Adeel Razi ◽  
Karl Friston ◽  
Daniele Marinazzo

AbstractThe influence of the global BOLD signal on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting-state networks – as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we included four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of the informative value of data with and without GSR. Our results showed negligible to small effects of GSR on connectivity within small (separately estimated) RSNs. For between-network connectivity, we found two important effects: the effect of GSR on between-network connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters representing (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater using data after GSR. In conclusion, GSR is a minor concern in DCM studies; however, individual between-network connections (as opposed to average between-network connectivity) and noise parameters should be interpreted quantitatively with some caution. The Kullback-Leibler divergence of the posterior from the prior, together with the precision of posterior estimates, might offer a useful measure to assess the appropriateness of GSR, when nuancing data features in resting state fMRI.


Author(s):  
Abhay M S Aradhya ◽  
Aditya Joglekar ◽  
Sundaram Suresh ◽  
M. Pratama

Analysis of resting state - functional Magnetic Resonance Imaging (rs-fMRI) data has been a challenging problem due to a high homogeneity, large intra-class variability, limited samples and difference in acquisition technologies/techniques. These issues are predominant in the case of Attention Deficit Hyperactivity Disorder (ADHD). In this paper, we propose a new Deep Transformation Method (DTM) that extracts the discriminant latent feature space from rsfMRI and projects it in the subsequent layer for classification of rs-fMRI data. The hidden transformation layer in DTM projects the original rs-fMRI data into a new space using the learning policy and extracts the spatio-temporal correlations of the functional activities as a latent feature space. The subsequent convolution and decision layers transform the latent feature space into high-level features and provide accurate classification. The performance of DTM has been evaluated using the ADHD200 rs-fMRI benchmark data with crossvalidation. The results show that the proposed DTM achieves a mean classification accuracy of 70.36% and an improvement of 8.25% on the state of the art methodologies was observed. The improvement is due to concurrent analysis of the spatio-temporal correlations between the different regions of the brain and can be easily extended to study other cognitive disorders using rs-fMRI. Further, brain network analysis has been studied to identify the difference in functional activities and the corresponding regions behind cognitive symptoms in ADHD.


2017 ◽  
Vol 1 (3) ◽  
pp. 222-241 ◽  
Author(s):  
Adeel Razi ◽  
Mohamed L. Seghier ◽  
Yuan Zhou ◽  
Peter McColgan ◽  
Peter Zeidman ◽  
...  

This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.


2010 ◽  
Vol 20 (8) ◽  
pp. 519-534 ◽  
Author(s):  
Martijn P. van den Heuvel ◽  
Hilleke E. Hulshoff Pol

2018 ◽  
Author(s):  
Jonathan F. O’Rawe ◽  
Jaime S. Ide ◽  
Hoi-Chung Leung

AbstractIn accordance with the concept of topographic organization of neuroanatomical structures, there is an increased interest in estimating and delineating continuous changes in the functional connectivity patterns across neighboring voxels within a region of interest using resting-state fMRI data. Fundamental to this functional connectivity gradient analysis is the assumption that the functional organization is stable and uniform across the region of interest. To evaluate this assumption, we developed a model testing procedure to arbitrate between overlapping, shifted, or different topographic connectivity gradients across subdivisions of a structure. We tested the procedure using the striatum, a subcortical structure consisting of the caudate nucleus and putamen, in which an extensive literature, primarily from rodents and non-human primates, suggest to have a shared topographic organization of a single diagonal gradient. We found, across multiple resting state fMRI data samples of different spatial resolutions in humans, and one macaque resting state fMRI data sample, that the models with different functional connectivity gradients across the caudate and putamen was the preferred model. The model selection procedure was validated in control conditions of checkerboard subdivisions, demonstrating the expected overlapping gradient. More specifically, while we replicated the diagonal organization of the functional connectivity gradients in both the caudate and putamen, our analysis also revealed a medial-lateral organization within the caudate. Not surprisingly, performing the same analysis assuming a unitary gradient obfuscates the medial-lateral organization of the caudate, producing only a diagonal gradient. These findings demonstrate the importance of testing basic assumptions and evaluating interpretations across species. The significance of differential topographic gradients across the putamen and caudate and the medial-lateral gradient of the caudate in humans should be tested in future studies.


Sign in / Sign up

Export Citation Format

Share Document