scholarly journals The Entorhinal Cortical Alvear Pathway Differentially Excites Pyramidal Cells and Interneuron Subtypes in Hippocampal CA1

2020 ◽  
Author(s):  
Karen A Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A Rory McQuiston

Abstract The entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto CA1 pyramidal cells (PCs) and interneurons with cell bodies located in stratum oriens were monosynaptic, had low release probability, and were mediated by glutamate receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 PCs but was capable of activating CA1 interneurons. However, different subtypes of interneurons were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare (O-LM) interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.

2020 ◽  
Author(s):  
Karen A. Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A. Rory McQuiston

AbstractThe entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto both CA1 pyramidal cells and stratum oriens interneurons were monosynaptic, had low release probability, and were mediated by AMPA receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 pyramidal neurons but was capable of activating CA1 stratum oriens interneurons. CA1 stratum oriens interneuron subtypes were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.


2019 ◽  
Author(s):  
Priyodarshan Goswamee ◽  
A. Rory McQuiston

AbstractIn hippocampal CA1, muscarinic acetylcholine (ACh) receptor (mAChR) activation via exogenous application of cholinergic agonists has been shown to presynaptically inhibit Schaffer collateral (SC) glutamatergic inputs in stratum radiatum (SR), and temporoammonic (TA) and thalamic nucleus reuniens (RE) glutamatergic inputs in stratum lacunosum-moleculare (SLM). However, steady-state uniform mAChR activation may not mimic the effect of ACh release in an intact hippocampal network. To more accurately examine the effect of ACh release on glutamatergic synaptic efficacy, we measured electrically evoked synaptic responses in CA1 pyramidal cells (PCs) following the optogenetic release of ACh in genetically modified mouse brain slices. The ratio of synaptic amplitudes in response to paired-pulse SR stimulation (stimulus 2/stimulus 1) was significantly reduced by the optogenetic release of ACh, consistent with a postsynaptic decrease in synaptic efficacy. The effect of ACh release was blocked by the M3 receptor antagonist 4-DAMP, the GABAB receptor antagonist CGP 52432, inclusion of GDP-β-S, cesium, QX314 in the intracellular patch clamp solution, or extracellular barium. These observations suggest that ACh release decreased SC synaptic transmission through an M3 muscarinic receptor-mediated increase in inhibitory interneuron excitability, which activate GABAB receptors and inwardly rectifying potassium channels on CA1 pyramidal cells. In contrast, the ratio of synaptic amplitudes in response to paired-pulse stimulation in the SLM was increased by ACh release, consistent with presynaptic inhibition. ACh-mediated effects in SLM were blocked by the M2 receptor antagonist AF-DX 116, presumably located on presynaptic terminals. Therefore, our data indicate that ACh release differentially modulates excitatory inputs in SR and SLM of CA1 through different cellular and network mechanisms.


2003 ◽  
Vol 90 (4) ◽  
pp. 2752-2756 ◽  
Author(s):  
Y. Isomura ◽  
M. Sugimoto ◽  
Y. Fujiwara-Tsukamoto ◽  
S. Yamamoto-Muraki ◽  
J. Yamada ◽  
...  

It is known that GABA, a major inhibitory transmitter in the CNS, acts as an excitatory (or depolarizing) transmitter transiently after intense GABAA receptor activation in adult brains. The depolarizing effect is considered to be dependent on two GABAA receptor-permeable anions, chloride (Cl–) and bicarbonate (HCO3–). However, little is known about their spatial and temporal profiles during the GABAergic depolarization in postsynaptic neurons. In the present study, we show that the amplitude of synaptically induced depolarizing response was correlated with intracellular Cl– accumulation in the soma of mature hippocampal CA1 pyramidal cells, by using whole cell patch-clamp recording and Cl– imaging technique with a Cl– indicator 6-methoxy- N-ethylquinolinium iodide (MEQ). The synaptically activated Cl– accumulation was mediated dominantly through GABAA receptors. Basket cells, a subclass of fast-spiking interneurons innervating the somatic portion of the pyramidal cells, actually fired at high frequency during the Cl– accumulation accompanying the depolarizing responses. These results suggest synaptically activated GABAA-mediated Cl– accumulation may play a critical role in generation of an excitatory GABAergic response in the mature pyramidal cells receiving intense synaptic inputs. This may be the first demonstration of microscopic visualization of intracellular Cl– accumulation during synaptic activation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pojeong Park ◽  
John Georgiou ◽  
Thomas M. Sanderson ◽  
Kwang-Hee Ko ◽  
Heather Kang ◽  
...  

AbstractLong-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


1997 ◽  
Vol 07 (01) ◽  
pp. 187-198 ◽  
Author(s):  
Haijian Sun ◽  
Lin Liu ◽  
Chunhua Feng ◽  
Aike Guo

The spatiotemporal dynamics of the hippocampus is studied. We first propose a fractal algorithm to model the growth of hippocampal CA1 pyramidal cells, together with an avalanche model for information transmission. Then the optical records of an epileptic focus in the hippocampus are analyzed and simulated. These processes indicate that the hippocampus normally stays in self-organized criticality with a harmonious spatiotemporal behavioral pattern, that is, showing 1/f fluctuation and power law distribution. In case of a neurological insult, the hippocampal system may step into supercriticality and initiate epilepsy.


2002 ◽  
Vol 87 (2) ◽  
pp. 1169-1174 ◽  
Author(s):  
Yoshikazu Isomura ◽  
Yoko Fujiwara-Tsukamoto ◽  
Michiko Imanishi ◽  
Atsushi Nambu ◽  
Masahiko Takada

Low concentration of Ni2+, a T- and R-type voltage-dependent calcium channel (VDCC) blocker, is known to inhibit the induction of long-term potentiation (LTP) in the hippocampal CA1 pyramidal cells. These VDCCs are distributed more abundantly at the distal area of the apical dendrite than at the proximal dendritic area or soma. Therefore we investigated the relationship between the Ni2+-sensitivity of LTP induction and the synaptic location along the apical dendrite. Field potential recordings revealed that 25 μM Ni2+ hardly influenced LTP at the proximal dendritic area (50 μm distant from the somata). In contrast, the same concentration of Ni2+ inhibited the LTP induction mildly at the middle dendritic area (150 μm) and strongly at the distal dendritic area (250 μm). Ni2+ did not significantly affect either the synaptic transmission at the distal dendrite or the burst-firing ability at the soma. However, synaptically evoked population spikes recorded near the somata were slightly reduced by Ni2+ application, probably owing to occlusion of dendritic excitatory postsynaptic potential (EPSP) amplification. Even when the stimulating intensity was strengthened sufficiently to overcome such a reduction in spike generation during LTP induction, the magnitude of distal LTP was not significantly recovered from the Ni2+-dependent inhibition. These results suggest that Ni2+ may inhibit the induction of distal LTP directly by blocking calcium influx through T- and/or R-type VDCCs. The differentially distributed calcium channels may play a critical role in the induction of LTP at dendritic synapses of the hippocampal pyramidal cells.


2020 ◽  
Author(s):  
Caitlin A. Murphy ◽  
Matthew I. Banks

ABSTRACTBackgroundWhile their behavioral effects are well-characterized, the mechanisms by which anaesthetics induce loss of consciousness are largely unknown. Anaesthetics may disrupt integration and propagation of information in corticothalamic networks. Recent studies have shown that isoflurane diminishes synaptic responses of thalamocortical (TC) and corticocortical (CC) afferents in a pathway-specific manner. However, whether the synaptic effects of isoflurane observed in extracellular recordings persist at the cellular level has yet to be explored.MethodsHere, we activate TC and CC layer 1 inputs in non-primary mouse neocortex in ex vivo brain slices and explore the degree to which isoflurane modulates synaptic responses in pyramidal cells and in two inhibitory cell populations, somatostatin-positive (SOM+) and parvalbumin-positive (PV+) interneurons.ResultsWe show that the effects of isoflurane on synaptic responses and intrinsic properties of these cells varies among cell type and by cortical layer. Layer 1 inputs to L4 pyramidal cells were suppressed by isoflurane at both TC and CC synapses, while those to L2/3 pyramidal cells and PV+ interneurons were not. TC inputs to SOM+ cells were rarely observed at all, while CC inputs to SOM+ interneurons were robustly suppressed by isoflurane.ConclusionsThese results suggest a mechanism by which isoflurane disrupts integration and propagation of thalamocortical and intracortical signals.


Sign in / Sign up

Export Citation Format

Share Document