scholarly journals Granule Cell Ensembles in Mouse Dentate Gyrus Rapidly Upregulate the Plasticity-Related Protein Synaptopodin after Exploration Behavior

2019 ◽  
Vol 30 (4) ◽  
pp. 2185-2198
Author(s):  
Mandy H Paul ◽  
Myoung Choi ◽  
Jessica Schlaudraff ◽  
Thomas Deller ◽  
Domenico Del Turco

Abstract The plasticity-related protein Synaptopodin (SP) has been implicated in neuronal plasticity. SP is targeted to dendritic spines and the axon initial segment, where it organizes the endoplasmic reticulum (ER) into the spine apparatus and the cisternal organelle, respectively. Here, we report an inducible third localization of SP in the somata of activated granule cell ensembles in mouse dentate gyrus. Using immunofluorescence and fluorescence in situ hybridization, we observed a subpopulation of mature granule cells (~1–2%) exhibiting perinuclear SP protein and a strong somatic SP mRNA signal. Double immunofluorescence labeling for Arc demonstrated that ~ 75% of these somatic SP-positive cells are also Arc-positive. Placement of mice into a novel environment caused a rapid (~2–4 h) induction of Arc, SP mRNA, and SP protein in exploration-induced granule cell ensembles. Lesion experiments showed that this induction requires input from the entorhinal cortex. Somatic SP colocalized with α-Actinin2, a known binding partner of SP. Finally, ultrastructural analysis revealed SP immunoprecipitate on dense plates linking cytoplasmic and perinuclear ER cisterns; these structures were absent in granule cells of SP-deficient mice. Our data implicate SP in the formation of contextual representations in the dentate gyrus and the behaviorally induced reorganization of cytoplasmic and perinuclear ER.

Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4249-4260 ◽  
Author(s):  
Anil Bagri ◽  
Theresa Gurney ◽  
Xiaoping He ◽  
Yong-Rui Zou ◽  
Dan R. Littman ◽  
...  

The dentate gyrus is the primary afferent pathway into the hippocampus, but there is little information concerning the molecular influences that govern its formation. In particular, the control of migration and cell positioning of dentate granule cells is not clear. We have characterized more fully the timing and route of granule cell migration during embryogenesis using in utero retroviral injections. Using this information, we developed an in vitro assay that faithfully recapitulates important events in dentate gyrus morphogenesis. In searching for candidate ligands that may regulate dentate granule cell migration, we found that SDF1, a chemokine that regulates cerebellar and leukocyte migration, and its receptor CXCR4 are expressed in patterns that suggest a role in dentate granule cell migration. Furthermore, CXCR4 mutant mice have a defect in granule cell position. Ectopic expression of SDF1 in our explant assay showed that it directly regulates dentate granule cell migration. Our study shows that a chemokine is necessary for the normal development of the dentate gyrus, a forebrain structure crucial for learning and memory.


1999 ◽  
Vol 82 (4) ◽  
pp. 1883-1894 ◽  
Author(s):  
Péter Molnár ◽  
J. Victor Nadler

Dentate granule cells become synaptically interconnected in the hippocampus of persons with temporal lobe epilepsy, forming a recurrent mossy fiber pathway. This pathway may contribute to the development and propagation of seizures. The physiology of mossy fiber–granule cell synapses is difficult to characterize unambiguously, because electrical stimulation may activate other pathways and because there is a low probability of granule cell interconnection. These problems were addressed by the use of scanning laser photostimulation in slices of the caudal hippocampal formation. Glutamate was released from a caged precursor with highly focused ultraviolet light to evoke action potentials in a small population of granule cells. Excitatory synaptic currents were recorded in the presence of bicuculline. Minimal laser photostimulation evoked an apparently unitary excitatory postsynaptic current (EPSC) in 61% of granule cells from rats that had experienced pilocarpine-induced status epilepticus followed by recurrent mossy fiber growth. An EPSC was also evoked in 13–16% of granule cells from the control groups. EPSCs from status epilepticus and control groups had similar peak amplitudes (∼30 pA), 20–80% rise times (∼1.2 ms), decay time constants (∼10 ms), and half-widths (∼8 ms). The mean failure rate was high (∼70%) in both groups, and in both groups activation of N-methyl-d-aspartate receptors contributed a small component to the EPSC. The strong similarity between responses from the status epilepticus and control groups suggests that they resulted from activation of a similar synaptic population. No EPSC was recorded when the laser beam was focused in the dentate hilus, suggesting that indirect activation of hilar mossy cells contributed little, if at all, to these results. Recurrent mossy fiber growth increases the density of mossy fiber–granule cell synapses in the caudal dentate gyrus by perhaps sixfold, but the new synapses appear to operate very similarly to preexisting mossy fiber–granule cell synapses.


2000 ◽  
Vol 84 (6) ◽  
pp. 2868-2879 ◽  
Author(s):  
M. Lynch ◽  
Ü. Sayin ◽  
G. Golarai ◽  
T. Sutula

Because granule cells in the dentate gyrus provide a major synaptic input to pyramidal neurons in the CA3 region of the hippocampus, spike generation by granule cells is likely to have a significant role in hippocampal information processing. Granule cells normally fire in a single-spike mode even when inhibition is blocked and provide single-spike output to CA3 when afferent activity converging into the entorhinal cortex from neocortex, brainstem, and other limbic regions increases. The effects of enhancement of N-methyl-d-aspartate (NMDA) receptor-dependent excitatory synaptic transmission and reduction in γ-aminobutyric acid-A (GABAA) receptor-dependent inhibition on spike generation were examined in granule cells of the dentate gyrus. In contrast to the single-spike mode observed in normal bathing conditions, perforant path stimulation in Mg2+-free bathing conditions evoked graded burst discharges in granule cells which increased in duration, amplitude, and number of spikes as a function of stimulus intensity. After burst discharges were evoked during transient exposure to bathing conditions that relieve the Mg2+ block of the NMDA receptor, there was a marked increase in the NMDA receptor-dependent component of the EPSP, but no significant increase in the non-NMDA receptor-dependent component of the EPSP in normal bathing medium. Supramaximal perforant path stimulation still evoked only a single spike, but granule cell spike generation was immediately converted from a single-spike firing mode to a graded burst discharge mode when inhibition was then reduced. The induction of graded burst discharges in Mg2+-free conditions and the expression of burst discharges evoked in normal bathing medium with subsequent disinhibition were both blocked bydl-2-amino-4-phosphonovaleric acid (APV) and were therefore NMDA receptor dependent, in contrast to long-term potentiation (LTP) in the perforant path, which is induced by NMDA receptors and is also expressed by α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptors. The graded burst discharge mode was also observed in granule cells when inhibition was reduced after a single epileptic afterdischarge, which enhances the NMDA receptor-dependent component of evoked synaptic response, and in the dentate gyrus reorganized by mossy fiber sprouting in kindled and kainic acid-treated rats. NMDA receptor-dependent plasticity of granule cell spike generation, which can be distinguished from LTP and induces long-term susceptibility to epileptic burst discharge under conditions of reduced inhibition, could modify information processing in the hippocampus and promote epileptic synchronization by increasing excitatory input into CA3.


2000 ◽  
Vol 83 (4) ◽  
pp. 2421-2430 ◽  
Author(s):  
Yo Otsu ◽  
Eiichi Maru ◽  
Hisayuki Ohata ◽  
Ichiro Takashima ◽  
Riichi Kajiwara ◽  
...  

In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca2+. The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizurelike activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.


Endocrinology ◽  
2011 ◽  
Vol 152 (9) ◽  
pp. 3492-3503 ◽  
Author(s):  
Laurence Bodineau ◽  
Christopher Taveau ◽  
Hong-Hanh Lê Quan Sang ◽  
Guillaume Osterstock ◽  
Isabelle Queguiner ◽  
...  

Apelin is a bioactive peptide identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ in 1998. The present data show that apelin modulates the activity of magnocellular and parvocellular oxytocin (OXY) neurons in the lactating rat. A combination of in situ hybridization and immunohistochemistry demonstrated the presence of apelin receptor mRNA in hypothalamic OXY neurons. Double immunofluorescence labeling then revealed the colocalization of apelin with OXY in about 20% of the hypothalamic OXY-positive neurons. Intracerebroventricular apelin administration inhibited the activity of magnocellular and parvocellular OXY neurons, as shown by measuring the c-fos expression in OXY neurons or by direct electrophysiological measurements of the electrical activity of these neurons. This effect was correlated with a decrease in the amount of milk ejected. Thus, apelin inhibits the activity of OXY neurons through a direct action on apelin receptors expressed by these neurons in an autocrine and paracrine manner. In conclusion, these findings highlight the inhibitory role of apelin as an autocrine/paracrine peptide acting on OXY neurons during breastfeeding.


1986 ◽  
Vol 55 (4) ◽  
pp. 739-750 ◽  
Author(s):  
E. J. Green ◽  
W. T. Greenough

Pre- and postsynaptic responses to activation of medial perforant path (MPP) axons were examined in hippocampal slices taken from rats reared for 3-4 wk in relatively complex (EC) or individual cage (IC) environments. Three types of extracellular field potentials were recorded in the infrapyramidal blade of the dentate gyrus: 1) granule cell population spikes (PSs), which reflect the number and synchrony of discharging granule cells (2), 2) population excitatory postsynaptic potentials (EPSPs), which reflect the amount of excitatory synaptic current flow into dendrites (28), and 3) presynaptic fiber volleys (FVs), which reflect the number of activated axons (28). Stimulation of the MPP evoked significantly larger PSs in slices taken from EC rats. There was no significant effect of rearing environment on PS/EPSP relationships. The slopes of EPSPs recorded at the site of synaptic activation in the dentate molecular layer and at the major current source in the dentate granule cell layer were significantly greater in slices taken from EC rats. The presynaptic FV was recorded at the site of synaptic activation in the molecular layer. FV amplitude did not differ significantly as a function of rearing environment. To examine possible differences in tissue impedance, granule cells were activated by stimulating granule cell axons in the dentate hilus and recording the antidromic PS in the granule cell layer. Antidromic PS amplitude was not significantly affected by rearing environment. The relative permanence of the experience-dependent alterations in synaptic transmission was assessed by comparing slices taken from rats that had been reared for 4 wk in complex environments followed by 3-4 wk in individual cages with those from rats reared for 7-8 wk in individual cages. There were no significant differences in MPP synaptic transmission between these groups of animals. The results suggest that experience in a relatively complex environment is associated with greater MPP synaptic transmission arising from an increased synaptic input to granule cells; the greater MPP synaptic transmission associated with behavioral experience can occur independent of behavioral state, influences from extrahippocampal brain regions and intrahippocampal inhibitory activity; and the experience-dependent synaptic alterations in the dentate gyrus are transient, in contrast to experience-dependent morphological alterations described in occipital cortex. The possible relationship of these alterations to the phenomenon of long-term enhancement is discussed.


2004 ◽  
Vol 92 (6) ◽  
pp. 3582-3595 ◽  
Author(s):  
Suzanne B. Bausch ◽  
James O. McNamara

Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatoty postsynaptic currents (sEPSCs) >600pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.


2005 ◽  
Vol 493 (4) ◽  
pp. 524-537 ◽  
Author(s):  
Christine E. Farrar ◽  
Christine S. Huang ◽  
Steven G. Clarke ◽  
Carolyn R. Houser

2003 ◽  
Vol 89 (6) ◽  
pp. 3018-3028 ◽  
Author(s):  
Charles J. Frazier ◽  
Ben W. Strowbridge ◽  
Roger L. Papke

Although the dentate gyrus is one of the primary targets of septo-hippocampal cholinergic afferents, relatively little is known about the cholinergic physiology of neurons in the area. By combining whole cell patch-clamp recording with brief local application of exogenous agonists in horizontal slices, we found that there is robust expression of functional somatic α7-containing nicotinic acetylcholine receptors (nAChRs) on molecular layer interneurons, hilar interneurons, and the glutamatergic mossy cells of the dentate hilus. In contrast, the principal neurons of the dentate gyrus, the granule cells, are generally unresponsive to focal somatic or dendritic application of ACh in the presence of atropine. We also demonstrate that cholinergic activation of α7-containing nAChRs on the subgranular interneurons of the hilus can produce methyllycaconitine-sensitive GABAergic inhibitory postsynaptic currents (IPSCs) in nearby granule cells and enhance the amplitude of an electrically evoked monosynaptic IPSC. Further, activation of α7-containing nAChRs on subgranular interneurons that is timed to coincide with synaptic release of glutamate onto these cells will enhance the functional inhibition of granule cells. These findings suggest that a complex interplay between glutamatergic afferents from the entorhinal cortex and cholinergic afferents from the medial septum could be involved in the normal regulation of granule cell function. Such a relationship between these two afferent pathways could be highly relevant to the study of both age-related memory dysfunction and disorders involving regulation of excitability, such as temporal lobe epilepsy.


Sign in / Sign up

Export Citation Format

Share Document