scholarly journals Gliome database: a comprehensive web-based tool to access and analyze glia secretome data

Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Jong-Heon Kim ◽  
Su-Hyeong Park ◽  
Jin Han ◽  
Pan-Woo Ko ◽  
Dongseop Kwon ◽  
...  

Abstract Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia–neuron or glia–glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly ‘Gliome’ database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.

2017 ◽  
Vol 1 (1) ◽  
pp. 44-49
Author(s):  
Nur Azizah ◽  
Dedeh Supriyanti ◽  
Siti Fairuz Aminah Mustapha ◽  
Holly Yang

In a company, the process of income and expense of money must have a profit-generating goal base. The success of financial management within the company, can be monitored from the ability of the financial management in managing the finances and utilize all the opportunities that exist with as much as possible with the aim to control the company's cash (cash flow) and the impact of generating profits in accordance with expectations. With a web-based online accounting system version 2.0, companies can be given the ease to manage money in and out of the company's cash. It has a user friendly system with navigation that makes it easy for the financial management to use it. Starting from the creation of a company's cash account used as a cash account and corporate bank account on the system, deletion or filing of cash accounts, up to the transfer invoice creation feature, receive and send money. Thus, this system is very effective and efficient in the management of income and corporate cash disbursements.   Keywords:​Accounting Online System, Financial Management, Cash and Bank


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ryan J Kast ◽  
Alexandra L Lanjewar ◽  
Colton D Smith ◽  
Pat Levitt

The expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.


2020 ◽  
Vol 21 (11) ◽  
pp. 3896 ◽  
Author(s):  
Rawnak Laila ◽  
Arif Hasan Khan Robin ◽  
Jong-In Park ◽  
Gopal Saha ◽  
Hoy-Taek Kim ◽  
...  

The obligate biotroph Plasmodiophora brassicae causes clubroot disease in oilseeds and vegetables of the Brassicaceae family, and cytokinins play a vital role in clubroot formation. In this study, we examined the expression patterns of 17 cytokinin-related genes involved in the biosynthesis, signaling, and degradation in Chinese cabbage inoculated with the Korean pathotype group 4 isolate of P. brassicae, Seosan. This isolate produced the most severe clubroot symptoms in Chinese cabbage cultivar “Bullam-3-ho” compared to three other Korean geographical isolates investigated. BrIPT1, a cytokinin biosynthesis gene, was induced on Day 1 and Day 28 in infected root tissues and the upregulation of this biosynthetic gene coincided with the higher expression of the response regulators BrRR1, on both Days and BrRR6 on Day 1 and 3. BrRR3 and 4 genes were also induced during gall enlargement on Day 35 in leaf tissues. The BrRR4 gene, which positively interact with phytochrome B, was consistently induced in leaf tissues on Day 1, 3, and 14 in the inoculated plants. The cytokinin degrading gene BrCKX3-6 were induced on Day 14, before gall initiation. BrCKX2,3,6 were induced until Day 28 and their expression was downregulated on Day 35. This insight improves our current understanding of the role of cytokinin signaling genes in clubroot disease development.


2019 ◽  
Author(s):  
Ryan J Kast ◽  
Alexandra L Lanjewar ◽  
Colton D Smith ◽  
Pat Levitt

AbstractThe expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Jingwen Wang ◽  
Junjiu Huang ◽  
Guang Shi

AbstractTransposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.


2019 ◽  
Vol 48 (D1) ◽  
pp. D155-D159 ◽  
Author(s):  
Akshay Kumar Avvaru ◽  
Deepak Sharma ◽  
Archana Verma ◽  
Rakesh K Mishra ◽  
Divya Tej Sowpati

Abstract Microsatellites are short tandem repeats of 1–6 nucleotide motifs, studied for their utility as genome markers and in forensics. Recent evidence points to the role of microsatellites in important regulatory functions, and their length polymorphisms at coding regions are linked to various neurodegenerative disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and their evolution remains poorly understood. Though other databases of microsatellites exist, they fall short on several fronts. MSDB (MicroSatellite DataBase) is a collection of >4 billion microsatellites from 37 680 genomes presented in a user-friendly web portal for easy, interactive analysis and visualization. This is by far the most comprehensive, annotated, updated database to access and analyze microsatellite data of multiple species. The features of MSDB enable users to explore the data as tables that can be filtered and exported, and also as interactive charts to view and compare the data of multiple species simultaneously. Its modularity and architecture permit seamless updates with new data, making it a powerful tool and useful resource to researchers working on this important class of DNA elements, particularly in context of their evolution and emerging roles in genome organization and gene regulation.


2001 ◽  
Vol 7 (S2) ◽  
pp. 446-447
Author(s):  
Sayeh Beheshti ◽  
David Matthes

The semaphorin family consists of a set of secreted and transmembrane proteins which contain a domain of approximately 500 amino acids called the semaphorin domain. The investigation of the role of semaphorin proteins in the nervous system has established them as chemorepellents of axons. Recent studies have identified the semaphorin proteins on the surface of cells in the immune system and in the genomes of two lytic viruses. These strongly suggest the possible involvement of the semaphorin proteins in the immune system. This study aims to understand the expression patterns of four semaphorin genes, Sema3B, Sema4A, Sema4F, and Sema6C in the lymphoid tissues of wild type mice. These proteins were chosen to represent the three subfamilies III, IV, and VI. The first family contains secreted proteins which have immunoglobulin domains (III), the second contains transmembrane proteins which have immunoglobulin domains (IV), and the third contains transmembrane proteins which do not have immunoglobulin domains (VI).


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Antonio Cappuccio ◽  
Shane T Jensen ◽  
Boris M Hartmann ◽  
Stuart C Sealfon ◽  
Vassili Soumelis ◽  
...  

From cellular activation to drug combinations, immunological responses are shaped by the action of multiple stimuli. Synergistic and antagonistic interactions between stimuli play major roles in shaping immune processes. To understand combinatorial regulation, we present the immune Synergistic/Antagonistic Interaction Learner (iSAIL). iSAIL includes a machine learning classifier to map and interpret interactions, a curated compendium of immunological combination treatment datasets, and their global integration into a landscape of ~30,000 interactions. The landscape is mined to reveal combinatorial control of interleukins, checkpoints, and other immune modulators. The resource helps elucidate the modulation of a stimulus by interactions with other cofactors, showing that TNF has strikingly different effects depending on co-stimulators. We discover new functional synergies between TNF and IFNβ controlling dendritic cell-T cell crosstalk. Analysis of laboratory or public combination treatment studies with this user-friendly web-based resource will help resolve the complex role of interaction effects on immune processes.


Author(s):  
Nalin J. Unakar

The increased number of lysosomes as well as the close approximation of lysosomes to the Golgi apparatus in tissue under variety of experimental conditions is commonly observed. These observations suggest Golgi involvement in lysosomal production. The role of the Golgi apparatus in the production of lysosomes in mouse liver was studied by electron microscopy of liver following toxic injury by CCI4.


2014 ◽  
Vol 4 (2) ◽  
pp. 113-121 ◽  
Author(s):  
Stephanie Chow ◽  
Stephen Yortsos ◽  
Najmedin Meshkati

This article focuses on a major human factors–related issue that includes the undeniable role of cultural factors and cockpit automation and their serious impact on flight crew performance, communication, and aviation safety. The report concentrates on the flight crew performance of the Boeing 777–Asiana Airlines Flight 214 accident, by exploring issues concerning mode confusion and autothrottle systems. It also further reviews the vital role of cultural factors in aviation safety and provides a brief overview of past, related accidents. Automation progressions have been created in an attempt to design an error-free flight deck. However, to do that, the pilot must still thoroughly understand every component of the flight deck – most importantly, the automation. Otherwise, if pilots are not completely competent in terms of their automation, the slightest errors can lead to fatal accidents. As seen in the case of Asiana Flight 214, even though engineering designs and pilot training have greatly evolved over the years, there are many cultural, design, and communication factors that affect pilot performance. It is concluded that aviation systems designers, in cooperation with pilots and regulatory bodies, should lead the strategic effort of systematically addressing the serious issues of cockpit automation, human factors, and cultural issues, including their interactions, which will certainly lead to better solutions for safer flights.


Sign in / Sign up

Export Citation Format

Share Document