2160Continuous shock-free termination of atrial fibrillation by local optogenetic therapy and arrhythmia-triggered activation of an implanted light source

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E C A Nyns ◽  
R H Poelma ◽  
L Volkers ◽  
C I Bart ◽  
T J Van Brakel ◽  
...  

Abstract Background Maintenance of sinus rhythm is the primary therapeutic goal for symptomatic atrial fibrillation (AF) patients but remains difficult to achieve because of suboptimal treatment options. While being effective in detecting and terminating AF, the widespread use of implantable atrial defibrillators is limited due to patients intolerance to repeated shocks. The negative adverse effects of electroshock therapy can hypothetically be overcome by allowing the heart itself to produce the electric current required for arrhythmia termination. As a result, the effector function of an electrical defibrillator would be provided by the heart itself, and therefore no longer rely on electronics, but on bioelectricity instead. Purpose To develop a hybrid bio-electronic system for automated and acute shock-free AF treatment. Methods To equip the heart with the effector function of the envisioned AF termination system, adeno-associated virus (AAV) vectors encoding red-activatable channelrhodopsin (ReaChR) (n=12) or citrine (n=4) were delivered locally to the right atrium (RA) of adult Wistar rats by gene painting. Four to 8 weeks later, AF was induced in vivo by atrial burst pacing after carbachol administration, followed by programmed local illumination of the RA by an implanted intrathoracic LED device whose activation was automatically regulated by an electrocardiogram (ECG)-based cardiac rhythm monitor. Results Gene painting of the RA resulted in transmural transduction of right atrial myocytes (78±6%) with minimum transgene expression of the left atrium and ventricles (6±2% and <0.5%, respectively). Electrophysiological assessments revealed no significant differences in ECG characteristics, atrial action potential duration and conduction velocity when compared to baseline or citrine control animals. Feasibility of optical AF termination was first assessed in an open-chest rat model, showing that a single 470-nm light pulse (3.5 mW/mm2, 1000 ms) efficiently terminated AF in all ReaChR-expressing rats with an average termination efficacy of 94±3% (n=12) vs. 3±3% (n=4) in citrine-expressing control animals (p<0.01). AF termination efficacy remained superb following automated detection and termination of AF by ECG-triggered activation of the implanted intra-thoracic LED in closed-chest ReaChR-expressing rats (96±4%), n=4), whereas none of the AF episodes were terminated in control rats (0%, n=4) (p<0.01). No bradycardias or other arrhythmias were observed following optical AF termination. Conclusions By using a hybrid bio-electronic approach to modulate cardiac excitability, our study delivers proof that AF can be detected and terminated automatically in a safe, effective and repetitive, yet shock-free manner. These findings may create the basis for the development of pain-free device therapy for cardiac arrhythmias, thereby paving the way for ambulatory AF treatment with the perspective to improve patients' prognosis and quality of life. Acknowledgement/Funding NWO Vidi grant (1714336) and ERC Starting Grant (716509) both to D.A.P.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Smoczynska ◽  
H.D.M Beekman ◽  
R.W Chui ◽  
S Rajamani ◽  
M.A Vos

Abstract Background Atrial fibrillation (AF) is the most common cardiac arrhythmia treated in clinical practice. Structural remodeling is characterized by atrial enlargement and contributes to the therapeutic resistance in patients with long-standing AF. Purpose To study the atrial arrhythmogenic and echocardiographic consequences induced by volume overload in the complete chronic atrioventricular block (CAVB) dog. Methods Echocardiographic and electrophysiological data was obtained in 14 anaesthetized Mongrel dogs, in acute AV-block (AAVB), after 6 weeks of CAVB (CAVB6) and CAVB10. Left atrial (LA) volume was determined with 2D echocardiography by using the biplane method. An electrocardiogram and monophasic action potentials (MAP) at the right atrial (RA) free wall were recorded. Atrial effective refractory period (AERP) was determined by continuous programmed electrical stimulation (PES) of 20 beats with a cycle length of 400 ms and an extrastimulus with decremental design until refractoriness was reached. A continuous PES protocol of 20 beats with an extrastimulus 5 ms longer than the AERP was applied for 150 seconds to trigger AF. After 5 min without arrhythmias, autonomic neuromodulation was performed by intravenous infusion (IV) of acetylcholine (1,5μg/kg/min to 6,0μg/kg/min) for 20 min followed by prompt IV infusion of isoprenaline (3μg/min) until the atrial heart rate increased by 20 bpm. PES with an extrastimulus was repeated for 150 seconds to induce AF. Results LA volume increased from 13.7±3.2 ml at AAVB to 20.5±5.9 ml* at CAVB6, and 22.7±6.0 ml* at CAVB10 (Fig. 1A). AERP was similar at AAVB, CAVB6, and CAVB10 (115.8±11.9, 117.3±11.7, and 106.8±12.1 ms respectively). Repetitive AF paroxysms of &gt;10 seconds were induced in 1/14 (7%) dogs at AAVB, 1/11 (9%) at CAVB6, and 5/10 (50%)* at CAVB10 (*p&lt;0.05) upon PES (Fig. 1B). Combined neuromodulation and PES did not increase the AF inducibility rate, but prolonged the longest episode of AF in the inducible dogs from 55±49 seconds to 236±202 seconds* at CAVB10 (Fig. 1C). LA volume was higher in inducible dogs 25.0±4.9 ml compared to 18.4±4.2 ml in non-inducible dogs at CAVB10. Conclusion Sustained atrial dilation forms a substrate for repetitive paroxysms of AF. Neuro-modulation prolongs AF episode duration in susceptible dogs. This animal model can be used to study structural remodeling of the atria and possible therapeutic advances in the management of AF. Figure 1 Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Amgen Research


2020 ◽  
Vol 46 (08) ◽  
pp. 895-907
Author(s):  
Nina D. Anfinogenova ◽  
Oksana Y. Vasiltseva ◽  
Alexander V. Vrublevsky ◽  
Irina N. Vorozhtsova ◽  
Sergey V. Popov ◽  
...  

AbstractPrompt diagnosis of pulmonary embolism (PE) remains challenging, which often results in a delayed or inappropriate treatment of this life-threatening condition. Mobile thrombus in the right cardiac chambers is a neglected cause of PE. It poses an immediate risk to life and is associated with an unfavorable outcome and high mortality. Thrombus residing in the right atrial appendage (RAA) is an underestimated cause of PE, especially in patients with atrial fibrillation. This article reviews achievements and challenges of detection and management of the right atrial thrombus with emphasis on RAA thrombus. The capabilities of transthoracic and transesophageal echocardiography and advantages of three-dimensional and two-dimensional echocardiography are reviewed. Strengths of cardiac magnetic resonance imaging (CMR), computed tomography, and cardiac ventriculography are summarized. We suggest that a targeted search for RAA thrombus is necessary in high-risk patients with PE and atrial fibrillation using transesophageal echocardiography and/or CMR when available independently on the duration of the disease. High-risk patients may also benefit from transthoracic echocardiography with right parasternal approach. The examination of high-risk patients should involve compression ultrasonography of lower extremity veins along with the above-mentioned technologies. Algorithms for RAA thrombus risk assessment and protocols aimed at identification of patients with RAA thrombosis, who will potentially benefit from treatment, are warranted. The development of treatment protocols specific for the diverse populations of patients with right cardiac thrombosis is important.


2021 ◽  
Author(s):  
Alexandra S Mighiu ◽  
Alice Recalde ◽  
Klemen Ziberna ◽  
Ricardo Carnicer ◽  
Jakub Tomek ◽  
...  

Abstract Aims Gp91-containing NADPH oxidases (NOX2) are a significant source of myocardial superoxide production. An increase in NOX2 activity accompanies atrial fibrillation (AF) induction and electrical remodelling in animal models and predicts incident AF in humans; however, a direct causal role for NOX2 in AF has not been demonstrated. Accordingly, we investigated whether myocardial NOX2 overexpression in mice (NOX2-Tg) is sufficient to generate a favourable substrate for AF and further assessed the effects of atorvastatin, an inhibitor of NOX2, on atrial superoxide production and AF susceptibility. Methods and results NOX2-Tg mice showed a 2- to 2.5-fold higher atrial protein content of NOX2 compared with wild-type (WT) controls, which was associated with a significant (twofold) increase in NADPH-stimulated superoxide production (2-hydroxyethidium by HPLC) in left and right atrial tissue homogenates (P = 0.004 and P = 0.019, respectively). AF susceptibility assessed in vivo by transoesophageal atrial burst stimulation was modestly increased in NOX2-Tg compared with WT (probability of AF induction: 88% vs. 69%, respectively; P = 0.037), in the absence of significant alterations in AF duration, surface ECG parameters, and LV mass or function. Mechanistic studies did not support a role for NOX2 in promoting electrical or structural remodelling, as high-resolution optical mapping of atrial tissues showed no differences in action potential duration and conduction velocity between genotypes. In addition, we did not observe any genotype difference in markers of fibrosis and inflammation, including atrial collagen content and Col1a1, Il-1β, Il-6, and Mcp-1 mRNA. Similarly, NOX2 overexpression did not have consistent effects on RyR2 Ca2+ leak nor did it affect PKA or CaMKII-mediated RyR2 phosphorylation. Finally, treatment with atorvastatin significantly inhibited atrial superoxide production in NOX2-Tg but had no effect on AF induction in either genotype. Conclusion Together, these data indicate that while atrial NOX2 overexpression may contribute to atrial arrhythmogenesis, NOX2-derived superoxide production does not affect the electrical and structural properties of the atrial myocardium.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan-Jing Wang ◽  
Huan Sun ◽  
Xiao-Fei Fan ◽  
Meng-Chao Zhang ◽  
Ping Yang ◽  
...  

Abstract Background The ablation targets of atrial fibrillation (AF) are adjacent to bronchi and pulmonary arteries (PAs). We used computed tomography (CT) to evaluate the anatomical correlation between left atrium (LA)-pulmonary vein (PV) and adjacent structures. Methods Data were collected from 126 consecutive patients using coronary artery CT angiography. The LA roof was divided into three layers and nine points. The minimal spatial distances from the nine points and four PV orifices to the adjacent bronchi and PAs were measured. The distances from the PV orifices to the nearest contact points of the PVs, bronchi, and PAs were measured. Results The anterior points of the LA roof were farther to the bronchi than the middle or posterior points. The distances from the nine points to the PAs were shorter than those to the bronchi (5.19 ± 3.33 mm vs 8.62 ± 3.07 mm; P < .001). The bilateral superior PV orifices, especially the right superior PV orifices were closer to the PAs than the inferior PV orifices (left superior PV: 7.59 ± 4.14 mm; right superior PV: 4.43 ± 2.51 mm; left inferior PV: 24.74 ± 5.26 mm; right inferior PV: 22.33 ± 4.75 mm) (P < .001). Conclusions The right superior PV orifices were closer to the bronchi and PAs than other PV orifices. The ablation at the mid-posterior LA roof had a higher possibility to damage bronchi. CT is a feasible method to assess the anatomical adjacency in vivo, which might provide guidance for AF ablation.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Natasja de Groot ◽  
Lisette vd Does ◽  
Ameeta Yaksh ◽  
Paul Knops ◽  
Pieter Woestijne ◽  
...  

Introduction: Transition of paroxysmal to longstanding persistent atrial fibrillation (LsPAF) is associated with progressive longitudinal dissociation in conduction and a higher incidence of focal fibrillation waves. The aim of this study was to provide direct evidence that the substrate of LsPAF consists of an electrical double-layer of dissociated waves, and that focal fibrillation waves are caused by endo-epicardial breakthrough. Hypothesis: LsPAF in humans is caused by electrical dissociation of the endo- and epicardial layer. Methods: Intra-operative mapping of the endo- and epicardial right atrial wall was performed in 9 patients with induced (N=4), paroxysmal (N=1), persistent (N=2) or longstanding-persistent AF (N=2). A clamp of two rectangular electrode-arrays (128 electrodes; inter-electrode distance 2mm) was introduced through an incision in the right atrial appendage. Series of 10 seconds of AF were analyzed and the incidence of endo-epicardial dissociation (≥15ms) was determined for all 128 endo-epicardial recording sites. Results: In patients with LsPAF the averaged degree of endo-epicardial dissociation was highest (24.9% vs. 5.9%). Using strict criteria for breakthrough (presence of an opposite wave within 4mm and <15ms before the origin of the focal wave), the far majority (77%) of all focal fibrillation waves could be attributed to endo-epicardial excitation. Conclusions: During LsPAF considerable differences in activation of the right endo- and epicardial wall exist. Endo-epicardial fibrillation waves that are out of phase, may conduct transmurally and create breakthrough waves in the opposite layer. This may explain the high persistence of AF and the low succes rate of ablative therapies in patients with LsPAF.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Srikanth Perike ◽  
Frederick Damen ◽  
Andrielle Capote ◽  
Katherina M Alsina ◽  
...  

Introduction: Atrial fibrillation (AF), is the most common sustained arrhythmia, with an estimated prevalence in the U.S. of 2.7 million to 6.1 million and is predictive to increase to 12.1 million in 2030. AF increases the chances of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. Objective: The overexpression of PPP1R12C, causes hypophosphorylation of atrial myosin light chain 2 (MLC2a), decreasing atrial contractility. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluated the role of PP1c-PPP1R12C interaction in MLC2a de-phosphorylation we used Western blots, coimmunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A) PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The Overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, that cause a reduction in atrial contractility and increases AF inducibility. All these discoveries advocate that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


2017 ◽  
Vol 44 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Zhengyu Bao ◽  
Hongwu Chen ◽  
Bing Yang ◽  
Michael Shehata ◽  
Weizhu Ju ◽  
...  

The efficacy of pulmonary vein antral isolation for patients with prolonged sinus pauses (PSP) on termination of atrial fibrillation has been reported. We studied the right atrial (RA) electrophysiologic and electroanatomic characteristics in such patients. Forty patients underwent electroanatomic mapping of the RA: 13 had PSP (group A), 13 had no PSP (group B), and 14 had paroxysmal supraventricular tachycardia (control group C). Group A had longer P-wave durations in lead II than did groups B and C (115.5 ± 15.4 vs 99.5 ± 10.9 vs 96.5 ± 10.4 ms; P=0.001), and RA activation times (106.8 ± 13.8 vs 99 ± 8.7 vs 94.5 ± 9.1 s; P=0.02). Group A's PP intervals were longer during adenosine triphosphate testing before ablation (4.6 ± 2.3 vs 1.7 ± 0.6 vs 1.5 ± 1 s; P &lt;0.001) and after ablation (4.7 ± 2.5 vs 2.2 ± 1.4 vs 1.6 ± 0.8 s; P &lt;0.001), and group A had more complex electrograms (11.4% ± 5.4% vs 9.3% ± 1.6% vs 5.8% ± 1.6%; P &lt;0.001). Compared with group C, group A had significantly longer corrected sinus node recovery times at a 400-ms pacing cycle length after ablation, larger RA volumes (100.1 ± 23.1 vs 83 ± 22.1 mL; P=0.04), and lower conduction velocities in the high posterior (0.87 ± 0.13 vs 1.02 ± 0.21 mm/ms; P=0.02) and high lateral RA (0.89 ± 0.2 vs 1.1 ± 0.35 mm/ms; P=0.04). We found that patients with PSP upon termination of atrial fibrillation have RA electrophysiologic and electroanatomic abnormalities that warrant post-ablation monitoring.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Scridon ◽  
VB Halatiu ◽  
AI Balan ◽  
DA Cozac ◽  
GV Moldovan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI Background The autonomic control of the pacemaker current, If, and the molecular mechanisms underlying parasympathetic If modulation are well understood. Conversely, the effects of chronic If blockade on the parasympathetic nervous system and on the heart rate (HR) response to acute parasympathetic changes are still largely unknown. Such interactions could significantly influence the course of patients undergoing chronic therapy with the If blocker ivabradine. Purpose We aimed to assess the effects of long-term If blockade using ivabradine on cardiac autonomic modulation and on the cardiovascular response to acute in vivo and in vitro parasympathetic stimulation. Methods Radiotelemetry ECG transmitters were implanted in 6 Control and 10 ivabradine-treated male Wistar rats (IVA; 3 weeks, 10 mg/kg/day); sympathetic and parasympathetic heart rate variability parameters were assessed. At the end of the study, the right atrium was removed and right atrial HCN(1-4) RNA expression levels were analyzed. The HR and systolic blood pressure (SBP) responses to in vivo electrical stimulation of the right vagus nerve (2–20 Hz) and the spontaneous sinus node discharge rate (SNDR) response to in vitro cholinergic receptors stimulation using carbamylcholine (10-9–10-6 mol/L) were assessed in 6 additional Control and 10 IVA rats. Results At the end of the study, mean 24-h HR was significantly lower in the IVA compared with the Control rats (301.3 ± 7.5 bpm vs. 341.5 ± 8.3 bpm; p&lt; 0.01). Ivabradine administration led to a significant increase in vagal tone and shifted the sympatho-vagal balance towards vagal dominance (awake, asleep, and over 24-h; all p&lt; 0.05). In the Control rats, in vivo vagus nerve stimulation induced a progressive decrease in both the SBP (p = 0.0001) and the HR (p&lt; 0.0001). Meanwhile, in the IVA rats, vagal stimulation had no effect on the HR (p = 0.16) and induced a significantly lower drop in SBP (p&lt; 0.05). Ivabradine-treated rats also presented a significantly lower SNDR drop in response to carbamylcholine (p&lt; 0.01) and significantly higher HCN4 expression (p = 0.02). Conclusion Long-term If blockade using ivabradine caused a significant increase in vagal tone and shifted the autonomic balance towards vagal dominance in rats. Given the highly proarrhythmic effects of vagal activation at the atrial level, these findings could provide an explanation for the increased risk of atrial fibrillation associated with ivabradine use in clinical trials. In addition, ivabradine reduced the HR response to direct muscarinic receptors stimulation, canceled the cardioinhibitory response and blunted the hemodynamic response to in vivo vagal stimulation, and led to significant sinus node HCN4 up-regulation. These data suggest that ivabradine-induced HCN4 and the consequent If up-regulation could render the sinus node less sensitive to acute vagal inputs and could thus protect against excessive bradycardia induced by acute vagal activation.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Di Lang ◽  
Lucas ratajczyk ◽  
Leonid Tyan ◽  
Daniel Turner ◽  
Francisco Alvarado ◽  
...  

Atrial fibrillation (AF) often occurs during heart failure (HF). Ectopic foci that trigger AF, are linked to discrete atrial regions that experience the highest remodeling and clinically used for AF ablation; however, mechanisms of their arrhythmogenic propensity remain elusive. We employed in vivo ECG telemetry, in vitro optical mapping and confocal imaging of Ca 2+ transients (CaT) from myocytes isolated from the right atrial appendage (RAA) and inter-caval region (ICR) of wild type (WT, n=10), caveolin-3 knockout (KO, n=6) and 8-weeks post-myocardial infarction HF (n=8) mice. HF and KO mice showed an increased susceptibility to pacing-induced AF and enhanced ectopy originated exclusively from ICR. Optical mapping in isolated atria showed prolongation of CaT rise up time (CaT-RT) in HF ICR, which suggested a remodeled coupling between L-type Ca 2+ channels (LTCCs) and ryanodine receptors (RyRs) in this specific region. In WT mice, RAA consists of structured myocytes with a prominent transverse-axial tubular system (TATS) while ICR myocytes don’t have TATS. In RAA, CaT-RT depends on LTCCs in TATS triggering RyR, while in ICR, all the LTCCs are localized in surface caveolae where they can activate subsarcolemmal RyRs and lead to a slow diffusion of Ca 2+ inside the cell interior. Downregulation of caveolae was observed specifically in HF ICR. To mimic this, we used cav3-KO mice. Triggered activities were observed in myocytes isolated from HF and KO ICR, which presumably underlie the ectopic activities in tissue level. These myocytes presented significantly unsynchronized sarcoplasmic reticulum (SR) Ca 2+ releases (synchronization index: 10.8±0.9 in WT vs 38.3±4.1 in HF vs 21.5±2.1 in KO, p <0.01 for HF and KO vs WT respectively) especially at the subsarcolemmal space that prolongs CaT-RT (62.2±4.1 ms in WT vs 122.5±12.8 ms in KO, p <0.01). In addition, failing ICR myocytes showed a higher occurrence and size of spontaneous Ca 2+ sparks which were linked to CaMKII activity and associated phosphorylation of RyR. Our findings demonstrate that in HF, caveolar disruption creates “hot spots” for arrhythmogenic ectopic activity emanated from discrete vulnerable regions of the right atrium which are associated with desynchronized SR Ca 2+ release and elevated fibrosis.


Sign in / Sign up

Export Citation Format

Share Document