scholarly journals Next-generation sequencing-based bulked segregant analysis without sequencing the parental genomes

Author(s):  
Jianbo Zhang ◽  
Dilip R Panthee

Abstract Genomic regions that control traits of interest can be rapidly identified using BSA-Seq, a technology in which next-generation sequencing (NGS) is applied to bulked segregant analysis (BSA). We recently developed the significant structural variant method for BSA-Seq data analysis that exhibits higher detection power than standard BSA-Seq analysis methods. Our original algorithm was developed to analyze BSA-Seq data in which genome sequences of one parent served as the reference sequences in genotype calling, and thus required the availability of high-quality assembled parental genome sequences. Here we modified the original script to effectively detect the genomic region-trait associations using only bulk genome sequences. We analyzed two public BSA-Seq datasets using our modified method and the standard allele frequency and G-statistic methods with and without the aid of the parental genome sequences. Our results demonstrate that the genomic region(s) associated with the trait of interest could be reliably identified via the significant structural variant method without using the parental genome sequences.

2021 ◽  
Author(s):  
Jianbo Zhang ◽  
Dilip R. Panthee

The genomic region(s) that controls a trait of interest can be rapidly identified using BSA-Seq, a technology in which next-generation se-quencing (NGS) is applied to bulked segregant analysis (BSA). We recently developed the significant structural variant method for BSA-Seq data analysis that exhibits higher detection power than standard BSA-Seq analysis methods. Our original algorithm was developed to analyze BSA-Seq data in which genome sequences of one parent served as the reference sequences in genotype calling, and thus required the availability of high-quality assembled parental genome sequences. Here we modified the original script to allow for the effective detection of the genomic region-trait associations using only bulk genome sequences. We analyzed a public BSA-Seq dataset using our modified method and the standard allele frequency and G-statistic methods with and without the aid of the parental genome sequences. Our results demonstrate that the genomic region(s) associated with the trait of interest could be reliably identified only via the significant structural variant method without using the parental genome sequences.Significance StatementBSA-Seq can be utilized to rapidly identify structural varianttrait associations, and our modified significant structural variant method allows the detection of such associations without sequencing the parental genomes, leading to further lower the sequencing cost and making BSA-Seq more accessible to the research community and more applicable to the species with a large genome.


2014 ◽  
Vol 142 (9) ◽  
pp. 1952-1962 ◽  
Author(s):  
D. GOEDHALS ◽  
P. A. BESTER ◽  
J. T. PAWESKA ◽  
R. SWANEPOEL ◽  
F. J. BURT

SUMMARYCrimean Congo haemorrhagic fever virus (CCHFV) is a bunyavirus with a single-stranded RNA genome consisting of three segments (S, M, L), coding for the nucleocapsid protein, envelope glycoproteins and RNA polymerase, respectively. To date only five complete genome sequences are available from southern African isolates. Complete genome sequences were generated for 10 southern African CCHFV isolates using next-generation sequencing techniques. The maximum-likelihood method was used to generate tree topologies for 15 southern African plus 26 geographically distinct complete sequences from GenBank. M segment reassortment was identified in 10/15 southern African isolates by incongruencies in grouping compared to the S and L segments. These reassortant M segments cluster with isolates from Asia/Middle East, while the S and L segments cluster with strains from South/West Africa. The CCHFV M segment shows a high level of genetic diversity, while the S and L segments appear to co-evolve. The reason for the high frequency of M segment reassortment is not known. It has previously been suggested that M segment reassortment results in a virus with high fitness but a clear role in increased pathogenicity has yet to be shown.


2019 ◽  
Vol 132 (10) ◽  
pp. 2913-2925 ◽  
Author(s):  
Noriaki Itoh ◽  
Tenta Segawa ◽  
Muluneh Tamiru ◽  
Akira Abe ◽  
Shota Sakamoto ◽  
...  

2018 ◽  
Vol 244 (8) ◽  
pp. 1473-1485 ◽  
Author(s):  
Sina-Elisabeth Ben Ali ◽  
Alexandra Schamann ◽  
Stefanie Dobrovolny ◽  
Alexander Indra ◽  
Sarah Zanon Agapito-Tenfen ◽  
...  

2013 ◽  
Author(s):  
Devendra Kumar Biswal ◽  
Sudeep Ghatani ◽  
Jollin A Shylla ◽  
Ranjana Sahu ◽  
Nandita Mullapudi ◽  
...  

Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create a NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and donot contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help invesigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites.


2013 ◽  
Author(s):  
Devendra Kumar Biswal ◽  
Sudeep Ghatani ◽  
Jollin A Shylla ◽  
Ranjana Sahu ◽  
Nandita Mullapudi ◽  
...  

Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create a NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and donot contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help invesigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites.


2018 ◽  
Vol 46 (4) ◽  
pp. 931-936 ◽  
Author(s):  
José P. Faria ◽  
Miguel Rocha ◽  
Isabel Rocha ◽  
Christopher S. Henry

In the era of next-generation sequencing and ubiquitous assembly and binning of metagenomes, new putative genome sequences are being produced from isolate and microbiome samples at ever-increasing rates. Genome-scale metabolic models have enormous utility for supporting the analysis and predictive characterization of these genomes based on sequence data. As a result, tools for rapid automated reconstruction of metabolic models are becoming critically important for supporting the analysis of new genome sequences. Many tools and algorithms have now emerged to support rapid model reconstruction and analysis. Here, we are comparing and contrasting the capabilities and output of a variety of these tools, including ModelSEED, Raven Toolbox, PathwayTools, SuBliMinal Toolbox and merlin.


Sign in / Sign up

Export Citation Format

Share Document