scholarly journals Genome Assembly of the Dogface Butterfly Zerene cesonia

2019 ◽  
Vol 12 (1) ◽  
pp. 3580-3585 ◽  
Author(s):  
Luis Rodriguez-Caro ◽  
Jennifer Fenner ◽  
Caleb Benson ◽  
Steven M Van Belleghem ◽  
Brian A Counterman

Abstract Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation.

2021 ◽  
Author(s):  
Andre Machado ◽  
Andre Gomes-dos-Santos ◽  
Miguel Fonseca ◽  
Rute da Fonseca ◽  
Ana Verissimo ◽  
...  

The Atlantic chub mackerel, Scomber colias Gmelin, 1789, is a medium-size pelagic fish with substantial importance in the fisheries of the Atlantic Ocean and the Mediterranean Sea. Over the past decade, this species has gained special relevance being one of the main targets of pelagic fisheries in the NE Atlantic. Here, we sequenced and annotated the first high-quality draft genome assembly of S. colias, produced with Pacbio HiFi long reads and Illumina Paired-End short reads. The estimated genome size is 814 Mb distributed into 2,028 scaffolds and 2,093 contigs with an N50 length of 4,19 and 3,34 Mb, respectively. We annotated 27,675 protein-coding genes and the BUSCO analyses indicated high completeness, with 97.3 % of the single-copy orthologs in the Actinopterygii library profile. The present genome assembly represents a valuable resource to address the biology and management of this relevant fishery. Finally, this is the fourth high-quality genome assembly within the Order Scombriformes and the first in the genus Scomber.


2021 ◽  
Author(s):  
Hong-Yuan Wei ◽  
Yu-Xian Ye ◽  
Hai-Jian Huang ◽  
Ming-Shun Chen ◽  
Zi-Xiang Yang ◽  
...  

AbstractThe horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces galls valuable for medicinal and chemical industries. S. chinensis manipulates its host plant to form well-organized horned galls during feeding. So far, more than twenty aphid genomes have been reported; however, all of those are derived from free-living aphids. Here we generated a high-quality genome assembly of S. chinensis, representing the first genome sequence of a galling aphid. The final genome assembly was 280.43 Mb, with 97% of the assembled sequences anchored into thirteen chromosomes. S. chinensis presents the smallest aphid genome size among available aphid genomes to date. The contig and scaffold N50 values were 3.39 Mb and 20.58 Mb, respectively. The assembly included 96.4% of conserved arthropod and 97.8% of conserved Hemiptera single-copy orthologous genes based on BUSCO analysis. A total of 13,437 protein-coding genes were predicted. Phylogenomic analysis showed that S. chinensis formed a single clade between the Eriosoma lanigerum clade and the Aphidini+Macrosiphini aphid clades. In addition, salivary proteins were found to be differentially expressed when S. chinensis underwent host alternation, indicating their potential roles in gall formation and plant defense suppression. A total of 36 cytochrome P450 genes were identified in S. chinensis, considerably fewer compared to other aphids, probably due to its small host plant range. The high-quality S. chinensis genome assembly and annotation provide an essential genetic background for future studies to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Lu Wang ◽  
Jinwei Wu ◽  
Xiaomei Liu ◽  
Dandan Di ◽  
Yuhong Liang ◽  
...  

Abstract Background The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered colobine species endemic to China, which has several distinct traits including a unique social structure. Although a genome assembly for R. roxellana is available, it is incomplete and fragmented because it was constructed using short-read sequencing technology. Thus, important information such as genome structural variation and repeat sequences may be absent. Findings To obtain a high-quality chromosomal assembly for R. roxellana qinlingensis, we used 5 methods: Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, BioNano optical maps, 10X Genomics link-reads, and high-throughput chromosome conformation capture. The assembled genome was ∼3.04 Gb, with a contig N50 of 5.72 Mb and a scaffold N50 of 144.56 Mb. This represented a 100-fold improvement over the previously published genome. In the new genome, 22,497 protein-coding genes were predicted, of which 22,053 were functionally annotated. Gene family analysis showed that 993 and 2,745 gene families were expanded and contracted, respectively. The reconstructed phylogeny recovered a close relationship between R. rollexana and Macaca mulatta, and these 2 species diverged ∼13.4 million years ago. Conclusion We constructed a high-quality genome assembly of the Qinling golden snub-nosed monkey; it had superior continuity and accuracy, which might be useful for future genetic studies in this species and as a new standard reference genome for colobine primates. In addition, the updated genome assembly might improve our understanding of this species and could assist conservation efforts.


Author(s):  
Xuankun Li ◽  
Emily Ellis ◽  
David Plotkin ◽  
Yume Imada ◽  
Masaya Yago ◽  
...  

Abstract We provide a new, annotated genome assembly of Neomicropteryx cornuta, a species of the so-called “mandibulate archaic moths” (Lepidoptera: Micropterigidae). These moths belong to a lineage that is thought to have split from all other Lepidoptera more than 300 million years ago and are consequently vital to understanding the early evolution of superorder Amphiesmenoptera, which contains the order Lepidoptera (butterflies and moths) and its sister order Trichoptera (caddisflies). Using PacBio HiFi sequencing reads, we assembled a highly-contiguous genome with a contig N50 of nearly 17 Mbp. The assembled genome length of 541,115,538 bp is about half the length of the largest published Amphiesmenoptera genome (Limnephilus lunatus, Trichoptera) and double the length of the smallest (Papilio polytes, Lepidoptera). We find high recovery of universal single copy orthologs with 98.1% of BUSCO genes present and provide a genome annotation of 15,643 genes aided by resolved isoforms from PacBio IsoSeq data. This high-quality genome assembly provides an important resource for studying ecological and evolutionary transitions in the early evolution of Amphiesmenoptera.


Author(s):  
Hongyuan Wei ◽  
Yu-Xuan Ye ◽  
Hai-Jian Huang ◽  
Ming-Shun Chen ◽  
Zi-Xiang Yang ◽  
...  

The horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces galls valuable for medicinal and chemical industries. S. chinensis manipulates its host plant to form well-organized horned galls during feeding. So far, more than twenty aphid genomes have been reported; however, all of those are derived from free-living aphids. Here we generated a high-quality genome assembly of S. chinensis, representing the first genome sequence of a galling aphid. The final genome assembly was 280.43 Mb, with 97% of the assembled sequences anchored into thirteen chromosomes. S. chinensis presents the smallest aphid genome size among available aphid genomes to date. The contig and scaffold N50 values were 3.39 Mb and 20.58 Mb, respectively. The assembly included 96.4% of conserved arthropod and 97.8% of conserved Hemiptera single-copy orthologous genes based on BUSCO analysis. A total of 13,437 protein-coding genes were predicted. Phylogenomic analysis showed that S. chinensis formed a single clade between the Eriosoma lanigerum clade and the Aphidini+Macrosiphini aphid clades. In addition, salivary proteins were found to be differentially expressed when S. chinensis underwent host alternation, indicating their potential roles in gall formation and plant defense suppression. A total of 36 cytochrome P450 genes were identified in S. chinensis, considerably fewer compared to other aphids, probably due to its small host plant range. The high-quality S. chinensis genome assembly and annotation provide an essential genetic background for future studies to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1873
Author(s):  
Yang Yang ◽  
Lina Wu ◽  
Zhuoying Weng ◽  
Xi Wu ◽  
Xi Wang ◽  
...  

The humpback grouper (Cromileptes altivelis), an Epinephelidae species, is patchily distributed in the reef habitats of Western Pacific water. This grouper possesses a remarkably different body shape and notably low growth rate compared with closely related grouper species. For promoting further research of the grouper, in the present study, a high-quality chromosome-level genome of humpback grouper was assembled using PacBio sequencing and high-throughput chromatin conformation capture (Hi-C) technology. The assembled genome was 1.013 Gb in size with 283 contigs, of which, a total of 143 contigs with 1.011 Gb in size were correctly anchored into 24 chromosomes. Moreover, a total of 26,037 protein-coding genes were predicted, of them, 25,243 (96.95%) genes could be functionally annotated. The high-quality chromosome-level genome assembly will provide pivotal genomic information for future research of the speciation, evolution and molecular-assisted breeding in humpback groupers. In addition, phylogenetic analysis based on shared single-copy orthologues of the grouper species showed that the humpback grouper is included in the Epinephelus genus and clustered with the giant grouper in one clade with a divergence time of 9.86 Myr. In addition, based on the results of collinearity analysis, a gap in chromosome 6 of the humpback grouper was detected; the missed genes were mainly associated with immunity, substance metabolism and the MAPK signal pathway. The loss of the parts of genes involved in these biological processes might affect the disease resistance, stress tolerance and growth traits in humpback groupers. The present research will provide new insight into the evolution and origin of the humpback grouper.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Bohn ◽  
Reza Halabian ◽  
Lukas Schrader ◽  
Victoria Shabardina ◽  
Raphael Steffen ◽  
...  

Abstract The harvester ant genus Pogonomyrmex is endemic to arid and semiarid habitats and deserts of North and South America. The California harvester ant Pogonomyrmex californicus is the most widely distributed Pogonomyrmex species in North America. Pogonomyrmex californicus colonies are usually monogynous, i.e. a colony has one queen. However, in a few populations in California, primary polygyny evolved, i.e. several queens cooperate in colony founding after their mating flights and continue to coexist in mature colonies. Here, we present a genome assembly and annotation of P. californicus. The size of the assembly is 241 Mb, which is in agreement with the previously estimated genome size. We were able to annotate 17,889 genes in total, including 15,688 protein-coding ones with BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness at a 95% level. The presented P. californicus genome assembly will pave the way for investigations of the genomic underpinnings of social polymorphism in the number of queens, regulation of aggression, and the evolution of adaptations to dry habitats.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 488 ◽  
Author(s):  
Shiyong Zhang ◽  
Jia Li ◽  
Qin Qin ◽  
Wei Liu ◽  
Chao Bian ◽  
...  

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


Author(s):  
Xiaolin Zhao ◽  
Zhichao Zhang ◽  
Sujiao Zheng ◽  
Wenwu Ye ◽  
Xiaobo Zheng ◽  
...  

Diaporthe-Phomopsis disease complex causes considerable yield losses in soybean production worldwide. As one of the major pathogens, Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is not only the primary agent of Phomopsis seed decay, but also one of the agents of Phomopsis pod and stem blight, and Phomopsis stem canker. We performed both PacBio long read sequencing and Illumina short read sequencing, and obtained a genome assembly for the P. longicolla strain YC2-1, which was isolated from soybean stem with Phomopsis stem blight disease. The 63.1 Mb genome assembly contains 87 scaffolds, with a minimum, maximum, and N50 scaffold length of 20 kb, 4.6 Mb, and 1.5 Mb respectively, and a total of 17,407 protein-coding genes. The high-quality data expand the genomic resource of P. longicolla species and will provide a solid foundation for a better understanding of their genetic diversity and pathogenic mechanisms.


Author(s):  
Yuanchao Liu ◽  
Longhua Huang ◽  
Huiping Hu ◽  
Manjun Cai ◽  
Xiaowei Liang ◽  
...  

Abstract Ganoderma leucocontextum, a newly discovered species of Ganodermataceae in China, has diverse pharmacological activities. G. leucocontextum was widely cultivated in southwest China, but the systematic genetic study has been impeded by the lack of a reference genome. Herein, we present the first whole-genome assembly of G. leucocontextum based on the Illumina and Nanopore platform from high-quality DNA extracted from a monokaryon strain (DH-8). The generated genome was 50.05 Mb in size with a N50 scaffold size of 3.06 Mb, 78,206 coding sequences and 13,390 putative genes. Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 96.55% of the 280 Fungi BUSCO genes. Furthermore, differences in functional genes of secondary metabolites (terpenoids) were analyzed between G. leucocontextum and G. lucidum. G. leucocontextum has more genes related to terpenoids synthesis compared to G. lucidum, which may be one of the reasons why they exhibit different biological activities. This is the first genome assembly and annotation for G. leucocontextum, which would enrich the toolbox for biological and genetic studies in G. leucocontextum.


Sign in / Sign up

Export Citation Format

Share Document