The Nursing Home Older Adult Gut Microbiome Composition Shows Time-dependent Dysbiosis and is Influenced by Medication Exposures, Age, Environment, and Frailty

Author(s):  
John P Haran ◽  
Abigail Zeamer ◽  
Doyle V Ward ◽  
Protiva Dutta ◽  
Vanni Bucci ◽  
...  

Abstract Older adults in nursing homes (NHs) have increased frailty, medication, and antimicrobial exposures, all factors that are known to affect the composition of gut microbiota. Our objective was to define which factors have the greatest association with the NH resident gut microbiota, explore patterns of dysbiosis and compositional changes in gut microbiota over time in this environment. We collected serial stool samples from NH residents. Residents were assessed using the Mini Nutritional Assessment tool and Clinical Frailty Scale. Bacterial composition of resident stool samples was determined by metagenomic sequencing. We used mixed-effect random forest modeling to identify clinical covariates that associate with microbiota. We enrolled and followed 166 residents from 5 NHs collecting 512 stool samples and following 15 residents for > 1 year. Medications, particularly psychoactive and anti-hypertensive medications, had the greatest effect on the microbiota. Age and frailty also contributed, and were associated with increased and decreased diversity, respectively. The microbiota of residents who had lived in the NH for > 1 year were enriched in inflammatory and pathogenic species and reduced in anti-inflammatory and symbiotic species. We observed intra-individual stability of the microbiome among older adults who had lived in the NH already for >1 year followed with sample collections 1 year apart. Older adult NH gut microbiome is heavily influenced by medications, age, and frailty. This microbiome is influenced by length of NH residence with dysbiosis becoming evident at 12 months, however after this point there is demonstrated relative stability over time.

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2020 ◽  
Author(s):  
Caroline Ivanne Le Roy ◽  
Alexander Kurilshikov ◽  
Emily Leeming ◽  
Alessia Visconti ◽  
Ruth Bowyer ◽  
...  

Abstract Background: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. Results: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17±0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18±11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41±0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30±0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed that increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation.Conclusions: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Sonia Tarallo ◽  
Giulio Ferrero ◽  
Gaetano Gallo ◽  
Antonio Francavilla ◽  
Giuseppe Clerico ◽  
...  

ABSTRACT Dysbiotic configurations of the human gut microbiota have been linked to colorectal cancer (CRC). Human small noncoding RNAs are also implicated in CRC, and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis, but their role has been less extensively explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens from patients with CRC or with adenomas and from healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We observed considerable overlap and a correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. We identified a combined predictive signature composed of 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC samples separately from healthy and adenoma samples (area under the curve [AUC] = 0.87). In the present study, we report evidence that host-microbiome dysbiosis in CRC can also be observed by examination of altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more-accurate tools for diagnostic purposes. IMPORTANCE The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3759
Author(s):  
Varsha D. Badal ◽  
Eleonora D. Vaccariello ◽  
Emily R. Murray ◽  
Kasey E. Yu ◽  
Rob Knight ◽  
...  

Aging is determined by complex interactions among genetic and environmental factors. Increasing evidence suggests that the gut microbiome lies at the core of many age-associated changes, including immune system dysregulation and susceptibility to diseases. The gut microbiota undergoes extensive changes across the lifespan, and age-related processes may influence the gut microbiota and its related metabolic alterations. The aim of this systematic review was to summarize the current literature on aging-associated alterations in diversity, composition, and functional features of the gut microbiota. We identified 27 empirical human studies of normal and successful aging suitable for inclusion. Alpha diversity of microbial taxa, functional pathways, and metabolites was higher in older adults, particularly among the oldest-old adults, compared to younger individuals. Beta diversity distances significantly differed across various developmental stages and were different even between oldest-old and younger-old adults. Differences in taxonomic composition and functional potential varied across studies, but Akkermansia was most consistently reported to be relatively more abundant with aging, whereas Faecalibacterium, Bacteroidaceae, and Lachnospiraceae were relatively reduced. Older adults have reduced pathways related to carbohydrate metabolism and amino acid synthesis; however, oldest-old adults exhibited functional differences that distinguished their microbiota from that of young-old adults, such as greater potential for short-chain fatty acid production and increased butyrate derivatives. Although a definitive interpretation is limited by the cross-sectional design of published reports, we integrated findings of microbial composition and downstream functional pathways and metabolites, offering possible explanations regarding age-related processes.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2407
Author(s):  
Konstantinos Gkiouras ◽  
Stavros Cheristanidis ◽  
Theopoula D. Papailia ◽  
Maria G. Grammatikopoulou ◽  
Nikolaos Karamitsios ◽  
...  

Although food insecurity has been associated with a disadvantageous socioeconomic status, especially in older adults, its association with comorbidities is less clear. The scope of the present cross-sectional study was to assess the prevalence of food insecurity among older adults and evaluate the association between food insecurity, malnutrition, chronic disease, multimorbidity and healthcare utilization. A total of 121 older adults (mean (standard deviation) age: 72.6 (8.1)) were recruited from a Primary Care Health Center from 10 August 2019 to 10 September 2019. Food insecurity and malnutrition status were assessed by the Household Food Insecurity Access Scale and Mini Nutritional Assessment tool, respectively. Recorded variables included financial, family data and comorbidities. The prevalence of food insecurity in the sample reached 50.4%, with men and older adults malnourished or at risk for malnutrition, exhibiting high risk for food insecurity. Multimorbidity, frequency of health care utilization and medication adherence were not associated with food insecurity, possibly due to the free health services and remunerated medications offered by the Greek government. However, male gender and malnutrition risk were significant predictors of food insecurity in the multiple logistic analyses. This study highlights the need for mainstreaming food insecurity assessment among older adults with comorbidities, especially those at risk for malnutrition.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1591-1591
Author(s):  
Jirayu Tanprasertsuk ◽  
Justin Shmalberg ◽  
Aashish Jha ◽  
LeeAnn Perry ◽  
Ryan Honaker

Abstract Objectives Dogs share similar gut microbiome (GM) with humans, making them a great model for investigating the effects of probiotics (PR) on GM and health. This randomized control trial examined changes in MB and health outcomes in household dogs after PR supplementation. Methods All dogs recruited were fed human grade cooked food ≥ 1 mo, not fed any cultured food, PR, prebiotics, or on antibiotics ≥ 3 mo, and absent of major diseases. Dogs were randomized to receive a daily dose of PR (20 billion CFU of L. reuteri, P. acidilactici, E. faecium, L. acidophilus, B. animalis, L. fermentum, L. rhamnosus) or placebo (PL) for 4 weeks. Owners completed a health survey and collected stool samples at baseline and 4 weeks after the intervention in both groups. Additional stool samples were collected 2 weeks after stopping the PR in the PR group. GM profiling was performed with metagenomic sequencing. Results Twenty three dogs in the PR and 19 dogs in the PL group completed the trial (5.6 ± 3.0 y, 69% male). PR had no effect on α-diversity. As compared to baseline, changes in β-diversity at the species level in 4.3% of GM were significantly affected by PR at week 4 (P < 0.001) but not at week 6. A significant increase (adj P < 0.01) for ≥ 2-fold in abundance was observed at week 4 as compared to baseline for 41 bacterial taxa, 29 (71%) of which belong in the Lactobacillus genus. The abundance of E. coli also decreased at week 4 in the PR group (2.8 folds, adj P < 0.01). The abundance of these taxa returned to baseline at week 6. Such changes in diversity or abundance were not observed with PL. Dogs fed PR tended to be at a lower risk of diarrhea during the trial (0% vs 16%, P = 0.08). No change in other health outcomes was observed. Conclusions Oral PR supplementation has a small but significant effect on GM in healthy dogs. Findings warrant further investigation with longer duration in populations at a higher risk of gastrointestinal diseases. Funding Sources NomNomNow Inc.


2020 ◽  
Vol 4 (22) ◽  
pp. 5797-5809
Author(s):  
Emma E. Ilett ◽  
Mette Jørgensen ◽  
Marc Noguera-Julian ◽  
Jens Christian Nørgaard ◽  
Gedske Daugaard ◽  
...  

Abstract Acute graft-versus-host disease (aGVHD) is a leading cause of transplantation-related mortality after allogeneic hematopoietic stem cell transplantation (aHSCT). 16S ribosomal RNA (16S rRNA) gene-based studies have reported that lower gut bacterial diversity and the relative abundance of certain bacteria after aHSCT are associated with aGVHD. Using shotgun metagenomic sequencing and a large cohort, we aimed to confirm and extend these observations. Adult aHSCT recipients with stool samples collected from day −30 to day 100 relative to aHSCT were included. One sample was selected per patient per period (pre-aHSCT (day −30 to day 0), early post-aHSCT (day 1 to day 28), and late post-aHSCT (day 29 to day 100)), resulting in 150 aHSCT recipients and 259 samples. Microbial and clinical factors were tested for differences between time periods and an association with subsequent aGVHD. Patients showed a decline in gut bacterial diversity posttransplant, with several patients developing a dominance of Enterococcus. A total of 36 recipients developed aGVHD at a median of 34 days (interquartile range, 26-50 days) post-aHSCT. Lower microbial gene richness (P = .02), a lower abundance of the genus Blautia (P = .05), and a lower abundance of Akkermansia muciniphila (P = .01) early post-aHSCT was observed in those who developed aGVHD. Myeloablative conditioning was associated with aGVHD along with a reduction in gene richness and abundance of Blautia and A muciniphila. These results confirm low diversity and Blautia being associated with aGVHD. Crucially, we add that pretransplant conditioning is associated with changes in gut microbiota. Investigations are warranted to determine the interplay of gut microbiota and conditioning in the development of aGVHD.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2017 ◽  
Vol 23 (8) ◽  
pp. 700-705 ◽  
Author(s):  
Lisa Manderino ◽  
Ian Carroll ◽  
M. Andrea Azcarate-Peril ◽  
Amber Rochette ◽  
Leslie Heinberg ◽  
...  

AbstractObjectives: Dysbiosis of the gut microbiome is implicated in numerous human health conditions. Animal studies have linked microbiome disruption to changes in cognitive functioning, although no study has examined this possibility in neurologically healthy older adults. Methods: Participants were 43 community-dwelling older adults (50–85 years) that completed a brief cognitive test battery and provided stool samples for gut microbiome sequencing. Participants performing≥1 SD below normative performance on two or more tests were compared to persons with one or fewer impaired scores. Results: Mann Whitney U tests revealed different distributions of Bacteroidetes (p=.01), Firmicutes (p=.02), Proteobacteria (p=.04), and Verrucomicrobia (p=.003) between Intact and Impaired groups. These phyla were significantly correlated with cognitive test performances, particularly Verrucomicrobia and attention/executive function measures. Conclusions: The current findings suggest that composition of the gut microbiome is associated with cognitive test performance in neurologically healthy older adults. Future studies are needed to confirm these findings and explore possible mechanisms. (JINS, 2017, 23, 700–705)


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2392
Author(s):  
Yu-Mi Kim ◽  
Narae Yang ◽  
Kirang Kim

This study aimed to identify food environment factors in the local community that could affect the levels of nutritional status and frailty in 372 older adults (at least 65 years old) experiencing food insecurity and enrolled in the integrated Community Health Promotion Program (CHPP) in two districts of Seoul. The local food environment was assessed using perceived food store accessibility questionnaires. In order to quantify nutrient intake, the 24-h recall method was applied. Malnutrition was measured using the Mini Nutritional Assessment tool, while frailty was assessed using the Frailty Measurement Questionnaire developed for the CHPP. Malnourished or frail elderly adults commonly had a lower intake of cereals and potatoes, meats, and vegetables than those who were not, and their resulting intake levels of energy, protein, iron, and vitamin groups were also significantly lower (all p-values < 0.05). Among the local community food store environment factors, the sufficiency of food stores (odds ratio (OR) = 1.988, 95% confidence interval (CI] = 1.211–3.262), freshness of foods (OR = 1.767, 95% CI = 1.075–2.886), and variety in foods (OR = 1.961, 95% CI = 1.197–3.212) were significant factors affecting the risk of malnutrition. For frailty, the freshness of foods (OR = 1.997, 95% CI = 1.053–3.788), variety in foods (OR = 2.440, 95% CI = 1.277–4.661), and small purchase of foods (OR = 2.645, 95% CI = 1.362–5.139) were significant environmental factors. In conclusion, we found that the perceived food store environment in the local community can influence the occurrence of malnutrition and frailty in vulnerable, urban older adults.


Sign in / Sign up

Export Citation Format

Share Document