scholarly journals Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals

2015 ◽  
Vol 73 (3) ◽  
pp. 715-726 ◽  
Author(s):  
Sam H. C. Noonan ◽  
Katharina E. Fabricius

Abstract Increasing carbon dioxide (CO2) emissions are raising sea surface temperature (SST) and causing ocean acidification (OA). While higher SST increases the frequency of mass coral bleaching events, it is unclear how OA will interact to affect this process. In this study, we combine in situ bleaching surveys around three tropical CO2 seeps with a 2-month two-factor (CO2 and temperature) tank experiment to investigate how OA and SST in combination will affect the bleaching susceptibility of tropical reef corals. Surveys at CO2 seep and control sites during a minor regional bleaching event gave little indication that elevated pCO2 influenced the bleaching susceptibility of the wider coral community, the four most common coral families (Acroporidae, Faviidae, Pocilloporidae, or Poritidae), or the thermally sensitive coral species Seriatopora hystrix. In the tank experiment, sublethal bleaching was observed at 31°C after 5 d in S. hystrix and 12 d in Acropora millepora, whereas controls (28°C) did not bleach. None of the measured proxies for coral bleaching was negatively affected by elevated pCO2 at pHT 7.79 (vs. 7.95 pHT in controls), equivalent to ∼780 µatm pCO2 and an aragonite saturation state of 2.5. On the contrary, high pCO2 benefitted some photophysiological measures (although temperature effects were much stronger than CO2 effects): maximum photosystem II quantum yields and light-limited electron transport rates increased in both species at high pCO2, whereas gross photosynthesis and pigment concentrations increased in S. hystrix at high pCO2. The field and laboratory data in combination suggest that OA levels up to a pHT of 7.8 will have little effect on the sensitivity of tropical corals to thermal bleaching. Indeed, some species appear to be able to utilize the more abundant dissolved inorganic carbon to increase productivity; however, these gains offset only a small proportion of the massive bleaching-related energy losses during thermal stress.

2011 ◽  
Vol 8 (2) ◽  
pp. 2329-2356 ◽  
Author(s):  
P. L. Munday ◽  
V. Hernaman ◽  
D. L. Dixson ◽  
S. R. Thorrold

Abstract. Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated pCO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were affected. Our results support the hypothesis that pH regulation in the otolith endolymph of fish exposed to elevated pCO2 can lead to increased precipitation of CaCO3 in otoliths of larval fish, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.


2015 ◽  
Vol 12 (8) ◽  
pp. 5907-5940
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


2020 ◽  
Vol 71 (3) ◽  
pp. 263 ◽  
Author(s):  
Catriona L. Hurd ◽  
John Beardall ◽  
Steeve Comeau ◽  
Christopher E. Cornwall ◽  
Jonathan N Havenhand ◽  
...  

‘Multiple drivers’ (also termed ‘multiple stressors’) is the term used to describe the cumulative effects of multiple environmental factors on organisms or ecosystems. Here, we consider ocean acidification as a multiple driver because many inorganic carbon parameters are changing simultaneously, including total dissolved inorganic carbon, CO2, HCO3–, CO32–, H+ and CaCO3 saturation state. With the rapid expansion of ocean acidification research has come a greater understanding of the complexity and intricacies of how these simultaneous changes to the seawater carbonate system are affecting marine life. We start by clarifying key terms used by chemists and biologists to describe the changing seawater inorganic carbon system. Then, using key groups of non-calcifying (fish, seaweeds, diatoms) and calcifying (coralline algae, coccolithophores, corals, molluscs) organisms, we consider how various physiological processes are affected by different components of the carbonate system.


2015 ◽  
Vol 73 (3) ◽  
pp. 970-980 ◽  
Author(s):  
Julia D. Sigwart ◽  
Gillian Lyons ◽  
Artur Fink ◽  
Magdalena A. Gutowska ◽  
Darren Murray ◽  
...  

Abstract Ocean acidification is an escalating environmental issue and associated changes in the ocean carbonate system have implications for many calcifying organisms. The present study followed the growth of Sepia officinalis from early-stage embryos, through hatching, to 7-week-old juveniles. Responses of cuttlefish to elevated pCO2 (hypercapnia) were investigated to test the impacts of near-future and extreme ocean acidification conditions on growth, developmental time, oxygen consumption, and yolk utilization as proxies for individual fitness. We further examined gross morphological characteristics of the internal calcareous cuttlebone to determine whether embryonically secreted shell lamellae are impacted by environmental hypercapnia. Embryonic growth was reduced and hatching delayed under elevated pCO2, both at environmentally relevant levels (0.14 kPa pCO2 similar to predicted ocean conditions in 2100) and extreme conditions (0.40 kPa pCO2). Comparing various metrics from control and intermediate treatments generally showed no significant difference in experimental measurements. Yet, results from the high pCO2 treatment showed significant changes compared with controls and revealed a consistent general trend across the three treatment levels. The proportion of animal mass contributed by the cuttlebone increased in both elevated pCO2 treatments. Gross cuttlebone morphology was affected under such conditions and cuttlebones of hypercapnic individuals were proportionally shorter. Embryonic shell morphology was maintained consistently in all treatments, despite compounding hypercapnia in the perivitelline fluid; however, post-hatching, hypercapnic animals developed denser cuttlebone laminae in shorter cuttlebones. Juvenile cuttlefish in acidified environments thus experience lower growth and yet increased calcification of their internal shell. The results of this study support recent findings that early cuttlefish life stages are more vulnerable towards hypercapnia than juveniles and adults, which may have negative repercussions on the biological fitness of cuttlefish hatchlings in future oceans.


2020 ◽  
Vol 17 (14) ◽  
pp. 3837-3857
Author(s):  
Claudine Hauri ◽  
Cristina Schultz ◽  
Katherine Hedstrom ◽  
Seth Danielson ◽  
Brita Irving ◽  
...  

Abstract. The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. Detection of these long-term trends requires a good understanding of the system’s natural state. The GOA is a highly dynamic system that exhibits large inorganic carbon variability on subseasonal to interannual timescales. This variability is poorly understood due to the lack of observations in this expansive and remote region. We developed a new model setup for the GOA that couples the three-dimensional Regional Oceanic Model System (ROMS) and the Carbon, Ocean Biogeochemistry and Lower Trophic (COBALT) ecosystem model. To improve our conceptual understanding of the system, we conducted a hindcast simulation from 1980 to 2013. The model was explicitly forced with temporally and spatially varying coastal freshwater discharges from a high-resolution terrestrial hydrological model, thereby affecting salinity, alkalinity, dissolved inorganic carbon, and nutrient concentrations. This represents a substantial improvement over previous GOA modeling attempts. Here, we evaluate the model on seasonal to interannual timescales using the best available inorganic carbon observations. The model was particularly successful in reproducing observed aragonite oversaturation and undersaturation of near-bottom water in May and September, respectively. The largest deficiency in the model is its inability to adequately simulate springtime surface inorganic carbon chemistry, as it overestimates surface dissolved inorganic carbon, which translates into an underestimation of the surface aragonite saturation state at this time. We also use the model to describe the seasonal cycle and drivers of inorganic carbon parameters along the Seward Line transect in under-sampled months. Model output suggests that the majority of the near-bottom water along the Seward Line is seasonally undersaturated with respect to aragonite between June and January, as a result of upwelling and remineralization. Such an extensive period of reoccurring aragonite undersaturation may be harmful to ocean acidification-sensitive organisms. Furthermore, the influence of freshwater not only decreases the aragonite saturation state in coastal surface waters in summer and fall, but it simultaneously decreases the surface partial pressure of carbon dioxide (pCO2), thereby decoupling the aragonite saturation state from pCO2. The full seasonal cycle and geographic extent of the GOA region is under-sampled, and our model results give new and important insights for months of the year and areas that lack in situ inorganic carbon observations.


2012 ◽  
Vol 9 (2) ◽  
pp. 1781-1792 ◽  
Author(s):  
C. J. M. Hoppe ◽  
G. Langer ◽  
S. D. Rokitta ◽  
D. A. Wolf-Gladrow ◽  
B. Rost

Abstract. The growing field of ocean acidification research is concerned with the investigation of organisms' responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30 % lower (i.e. ~300 μatm at a target pCO2 of 1000 μatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.


2009 ◽  
Vol 6 (10) ◽  
pp. 2145-2153 ◽  
Author(s):  
K. G. Schulz ◽  
J. Barcelos e Ramos ◽  
R. E. Zeebe ◽  
U. Riebesell

Abstract. Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3−) at the expense of carbonate ion (CO32−) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (Ω). Several components of the carbonate system are considered potential key variables influencing for instance calcium carbonate precipitation in marine calcifiers such as coccolithophores, foraminifera, corals, mollusks and echinoderms. Unravelling the sensitivities of marine organisms and ecosystems to CO2 induced ocean acidification (OA) requires well-controlled experimental setups and accurate carbonate system manipulations. Here we describe and analyse the chemical changes involved in the two basic approaches for carbonate chemistry manipulation, i.e. changing DIC at constant total alkalinity (TA) and changing TA at constant DIC. Furthermore, we briefly introduce several methods to experimentally manipulate DIC and TA. Finally, we examine responses obtained with both approaches using published results for the coccolithophore Emiliania huxleyi. We conclude that under most experimental conditions in the context of ocean acidification DIC and TA manipulations yield similar changes in all parameters of the carbonate system, which implies direct comparability of data obtained with the two basic approaches for CO2 perturbation.


2011 ◽  
Vol 8 (5) ◽  
pp. 9165-9200 ◽  
Author(s):  
A. McIntyre-Wressnig ◽  
J. M. Bernhard ◽  
D. C. McCorkle ◽  
P. Hallock

Abstract. We conducted experiments to assess the effect of elevated atmospheric carbon dioxide concentrations on survival, fitness, shell microfabric and growth of two species of symbiont-bearing coral-reef benthic foraminifera, using pCO2 Ievels similar to those likely to occur in shallow marine pore waters in the decades ahead. Foraminifera were cultured at constant temperature and controlled pCO2 (385 ppmv, 1000 ppmv, and 2000 ppmv) for six weeks, and total alkalinity and dissolved inorganic carbon were measured to characterize the carbonate chemistry of the incubations. Foraminiferal survival and cellular energy levels were assessed using Adenosine Triphosphate (ATP) analyses, and test microstructure and growth were evaluated using high resolution SEM and image analysis. Fitness and survival of Amphistegina (A.) gibbosa and Archaias (A.) angulatus were not directly affected by elevated pCO2 and the concomitant decrease in pH and calcite saturation states (Ωc values) of the seawater (pH and Ωc values of 8.12, 7.86, and 7.50, and 5.4, 3.4, and 1.5, for control, 1000 ppmv, and 2000 ppmv, respectively). In A. gibbosa, a species precipitating low-Mg calcite, test growth was not affected by elevated pCO2, but areas of dissolved calcium carbonate were observed even though Ωc was >1 in all treatments; the fraction of test area dissolved increased with decreasing Ωc. Similar dissolution was observed in offspring produced in the 2000 ppmv pCO2 treatments. In A. angulatus, whose tests are more-solubile high-Mg calcite, growth was greatly diminished in the 2000 ppmv pCO2 treatment compared to the control. These non-lethal effects of ocean acidification – reduced growth in A. angulatus, and enhanced dissolution in A. gibbosa – may reflect differences in test mineralogy for the two species; the long-term ecological consequences of these effects are not yet known.


2012 ◽  
Vol 9 (7) ◽  
pp. 2401-2405 ◽  
Author(s):  
C. J. M. Hoppe ◽  
G. Langer ◽  
S. D. Rokitta ◽  
D. A. Wolf-Gladrow ◽  
B. Rost

Abstract. The growing field of ocean acidification research is concerned with the investigation of organism responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small-scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30% lower (i.e. ~300 μatm at a target pCO2 of 1000 μatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.


2014 ◽  
Vol 11 (6) ◽  
pp. 1581-1597 ◽  
Author(s):  
K. Haynert ◽  
J. Schönfeld ◽  
R. Schiebel ◽  
B. Wilson ◽  
J. Thomsen

Abstract. Calcifying foraminifera are expected to be endangered by ocean acidification; however, the response of a complete community kept in natural sediment and over multiple generations under controlled laboratory conditions has not been constrained to date. During 6 months of incubation, foraminiferal assemblages were kept and treated in natural sediment with pCO2-enriched seawater of 430, 907, 1865 and 3247 μatm pCO2. The fauna was dominated by Ammonia aomoriensis and Elphidium species, whereas agglutinated species were rare. After 6 months of incubation, pore water alkalinity was much higher in comparison to the overlying seawater. Consequently, the saturation state of Ωcalc was much higher in the sediment than in the water column in nearly all pCO2 treatments and remained close to saturation. As a result, the life cycle (population density, growth and reproduction) of living assemblages varied markedly during the experimental period, but was largely unaffected by the pCO2 treatments applied. According to the size–frequency distribution, we conclude that foraminifera start reproduction at a diameter of 250 μm. Mortality of living Ammonia aomoriensis was unaffected, whereas size of large and dead tests decreased with elevated pCO2 from 285 μm (pCO2 from 430 to 1865 μatm) to 258 μm (pCO2 3247 μatm). The total organic content of living Ammonia aomoriensis has been determined to be 4.3% of CaCO3 weight. Living individuals had a calcium carbonate production rate of 0.47 g m−2 a−1, whereas dead empty tests accumulated a rate of 0.27 g m−2 a−1. Although Ωcalc was close to 1, approximately 30% of the empty tests of Ammonia aomoriensis showed dissolution features at high pCO2 of 3247 μatm during the last 2 months of incubation. In contrast, tests of the subdominant species, Elphidium incertum, stayed intact. Our results emphasize that the sensitivity to ocean acidification of the endobenthic foraminifera Ammonia aomoriensis in their natural sediment habitat is much lower compared to the experimental response of specimens isolated from the sediment.


Sign in / Sign up

Export Citation Format

Share Document