scholarly journals The Pantelides algorithm for delay differential-algebraic equations

Author(s):  
Ines Ahrens ◽  
Benjamin Unger

Abstract We present a graph-theoretical approach that can detect which equations of a delay differential-algebraic equation (DDAE) need to be differentiated or shifted to construct a solution of the DDAE. Our approach exploits the observation that differentiation and shifting are very similar from a structural point of view, which allows us to generalize the Pantelides algorithm for differential-algebraic equations to the DDAE setting. The primary tool for the extension is the introduction of equivalence classes in the graph of the DDAE, which also allows us to derive a necessary and sufficient criterion for the termination of the new algorithm.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Leping Sun ◽  
Yuhao Cong

This paper is concerned with the asymptotic stability of delay differential-algebraic equations. Two stability criteria described by evaluating a corresponding harmonic analytical function on the boundary of a certain region are presented. Stability regions are also presented so as to show the method geometrically. Our results are not reported.


Author(s):  
Patrick S. Heaney ◽  
Gene Hou

This paper describes a numerical technique for simulating the dynamics of constrained systems, which are described generally by differential-algebraic equations. The Projection Method for index reduction of a differential-algebraic equation and a minimal correction procedure are described. This procedure ensures algebraic constraints are satisfied during the numerical integration of the reduced index system of differential equations. Two examples illustrate how the method can be utilized to solve constrained multibody and rotational dynamics problems. The efficiency and accuracy of the proposed index-reduction and minimal correction method are then evaluated.


Sign in / Sign up

Export Citation Format

Share Document