Chern Class Inequalities on Polarized Manifolds and Nef Vector Bundles
Abstract This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our 1st main result is a family of sharp Chern class inequalities. Among them the 1st one is a variant of a classical result and the equality case of the 2nd one is a characterization of hypersurfaces. The 2nd main result is a Chern number inequality on it, which includes a reverse Miyaoka–Yau-type inequality. The 3rd main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.