scholarly journals Chern Class Inequalities on Polarized Manifolds and Nef Vector Bundles

Author(s):  
Ping Li ◽  
Fangyang Zheng

Abstract This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our 1st main result is a family of sharp Chern class inequalities. Among them the 1st one is a variant of a classical result and the equality case of the 2nd one is a characterization of hypersurfaces. The 2nd main result is a Chern number inequality on it, which includes a reverse Miyaoka–Yau-type inequality. The 3rd main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.

2003 ◽  
Vol 337 (12) ◽  
pp. 781-784 ◽  
Author(s):  
Huai-Dong Cao ◽  
Bing-Long Chen ◽  
Xi-Ping Zhu

2020 ◽  
Vol 2020 (763) ◽  
pp. 111-127 ◽  
Author(s):  
Lei Ni ◽  
Yanyan Niu

AbstractIn this paper we prove a gap theorem for Kähler manifolds with nonnegative orthogonal bisectional curvature and nonnegative Ricci curvature, which generalizes an earlier result of the first author [L. Ni, An optimal gap theorem, Invent. Math. 189 2012, 3, 737–761]. We also prove a Liouville theorem for plurisubharmonic functions on such a manifold, which generalizes a previous result of L.-F. Tam and the first author [L. Ni and L.-F. Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 2003, 3, 457–524] and complements a recent result of Liu [G. Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 2016, 15, 2899–2919].


Sign in / Sign up

Export Citation Format

Share Document