scholarly journals Linking of Lagrangian Tori and Embedding Obstructions in Symplectic 4-Manifolds

Author(s):  
Laurent Ĉoté ◽  
Georgios Dimitroglou Rizell

Abstract We classify weakly exact, rational Lagrangian tori in $T^* \mathbb{T}^2- 0_{\mathbb{T}^2}$ up to Hamiltonian isotopy. This result is related to the classification theory of closed $1$-forms on $\mathbb{T}^n$ and also has applications to symplectic topology. As a 1st corollary, we strengthen a result due independently to Eliashberg–Polterovich and to Giroux describing Lagrangian tori in $T^* \mathbb{T}^2-0_{\mathbb{T}^2}$, which are homologous to the zero section. As a 2nd corollary, we exhibit pairs of disjoint totally real tori $K_1, K_2 \subset T^*\mathbb{T}^2$, each of which is isotopic through totally real tori to the zero section, but such that the union $K_1 \cup K_2$ is not even smoothly isotopic to a Lagrangian. In the 2nd part of the paper, we study linking of Lagrangian tori in $({\mathbb{R}}^4, \omega )$ and in rational symplectic $4$-manifolds. We prove that the linking properties of such tori are determined by purely algebro-topological data, which can often be deduced from enumerative disk counts in the monotone case. We also use this result to describe certain Lagrangian embedding obstructions.

2016 ◽  
Vol 08 (03) ◽  
pp. 375-397 ◽  
Author(s):  
Tobias Ekholm ◽  
Thomas Kragh ◽  
Ivan Smith

Let [Formula: see text]. We prove that the cotangent bundles [Formula: see text] and [Formula: see text] of oriented homotopy [Formula: see text]-spheres [Formula: see text] and [Formula: see text] are symplectomorphic only if [Formula: see text], where [Formula: see text] denotes the group of oriented homotopy [Formula: see text]-spheres under connected sum, [Formula: see text] denotes the subgroup of those that bound a parallelizable [Formula: see text]-manifold, and where [Formula: see text] denotes [Formula: see text] with orientation reversed. We further show that if [Formula: see text] and [Formula: see text] admits a Lagrangian embedding in [Formula: see text], then [Formula: see text]. The proofs build on [1] and [18] in combination with a new cut-and-paste argument; that also yields some interesting explicit exact Lagrangian embeddings, for instance of the sphere [Formula: see text] into the plumbing [Formula: see text] of cotangent bundles of certain exotic spheres. As another application, we show that there are re-parametrizations of the zero-section in the cotangent bundle of a sphere that are not Hamiltonian isotopic (as maps rather than as submanifolds) to the original zero-section.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6449-6459 ◽  
Author(s):  
Akram Ali ◽  
Siraj Uddin ◽  
Wan Othman ◽  
Cenap Ozel

In this paper, we establish some optimal inequalities for the squared mean curvature in terms warping functions of a C-totally real doubly warped product submanifold of a locally conformal almost cosymplectic manifold with a pointwise ?-sectional curvature c. The equality case in the statement of inequalities is also considered. Moreover, some applications of obtained results are derived.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Maria-Veronica Ciocanel ◽  
Riley Juenemann ◽  
Adriana T. Dawes ◽  
Scott A. McKinley

AbstractIn developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures. Ring channels are examples of such structures that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. Given the limitations in studying interactions of actin with myosin in vivo, we generate time-series data of protein polymer interactions in cells using complex agent-based models. Since the data has a filamentous structure, we propose sampling along the actin filaments and analyzing the topological structure of the resulting point cloud at each time. Building on existing tools from persistent homology, we develop a topological data analysis (TDA) method that assesses effective ring generation in this dynamic data. This method connects topological features through time in a path that corresponds to emergence of organization in the data. In this work, we also propose methods for assessing whether the topological features of interest are significant and thus whether they contribute to the formation of an emerging hole (ring channel) in the simulated protein interactions. In particular, we use the MEDYAN simulation platform to show that this technique can distinguish between the actin cytoskeleton organization resulting from distinct motor protein binding parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Scott Broderick ◽  
Ruhil Dongol ◽  
Tianmu Zhang ◽  
Krishna Rajan

AbstractThis paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.


Sign in / Sign up

Export Citation Format

Share Document