scholarly journals Schur $P$-positivity and Involution Stanley Symmetric Functions

2017 ◽  
Vol 2019 (17) ◽  
pp. 5389-5440 ◽  
Author(s):  
Zachary Hamaker ◽  
Eric Marberg ◽  
Brendan Pawlowski

Abstract The involution Stanley symmetric functions$\hat{F}_y$ are the stable limits of the analogs of Schubert polynomials for the orbits of the orthogonal group in the flag variety. These symmetric functions are also generating functions for involution words and are indexed by the involutions in the symmetric group. By construction, each $\hat{F}_y$ is a sum of Stanley symmetric functions and therefore Schur positive. We prove the stronger fact that these power series are Schur $P$-positive. We give an algorithm to efficiently compute the decomposition of $\hat{F}_y$ into Schur $P$-summands and prove that this decomposition is triangular with respect to the dominance order on partitions. As an application, we derive pattern avoidance conditions which characterize the involution Stanley symmetric functions which are equal to Schur $P$-functions. We deduce as a corollary that the involution Stanley symmetric function of the reverse permutation is a Schur $P$-function indexed by a shifted staircase shape. These results lead to alternate proofs of theorems of Ardila–Serrano and DeWitt on skew Schur functions which are Schur $P$-functions. We also prove new Pfaffian formulas for certain related involution Schubert polynomials.

10.37236/2320 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

We study the class $\mathcal C$ of symmetric functions whose coefficients in the Schur basis can be described by generating functions for sets of tableaux with fixed shape.  Included in this class are the Hall-Littlewood polynomials, $k$-Schur functions, and Stanley symmetric functions; functions whose Schur coefficients encode combinatorial, representation theoretic and geometric information. While Schur functions represent the cohomology of the Grassmannian variety of $GL_n$, Grothendieck functions $\{G_\lambda\}$ represent the $K$-theory of the same space.  In this paper, we give a combinatorial description of the coefficients when any element of $\mathcal C$ is expanded in the $G$-basis or the basis dual to $\{G_\lambda\}$.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Nan Li

International audience We study the problem of expanding the product of two Stanley symmetric functions $F_w·F_u$ into Stanley symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized Schubert polynomial $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, and study the behavior of the expansion of $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ into Schubert polynomials, as $n$ increases. We prove that this expansion stabilizes and thus we get a natural expansion for the product of two Stanley symmetric functions. In the case when one permutation is Grassmannian, we have a better understanding of this stability. Nous étudions le problème de développement du produit de deux fonctions symétriques de Stanley $F_w·F_u$ en fonctions symétriques de Stanley de façon naturelle. Notre méthode consiste à considérer une fonction symétrique de Stanley comme un polynôme du Schubert stabilisè $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, et à étudier le comportement de développement de $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ en polynômes de Schubert lorsque $n$ augmente. Nous prouvons que cette développement se stabilise et donc nous obtenons une développement naturelle pour le produit de deux fonctions symétriques de Stanley. Dans le cas où l'une des permutations est Grassmannienne, nous avons une meilleure compréhension de cette stabilité.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Seung Jin Lee

International audience We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigatethe combinatorics of affine Schubert calculus for typeA. We introduce Murnaghan-Nakayama elements and Dunklelements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutativealgebra generated by these operators is isomorphic to the cohomology of the affine flag variety. As a byproduct, weobtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions. This enable us to expressk-Schur functions in terms of power sum symmetric functions. We also provide the defi-nition of the affine Schubert polynomials, polynomial representatives of the Schubert basis in the cohomology of theaffine flag variety.


10.37236/6952 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Graham Hawkes ◽  
Kirill Paramonov ◽  
Anne Schilling

Combining results of T.K. Lam and J. Stembridge, the type $C$ Stanley symmetric function $F_w^C(\mathbf{x})$, indexed by an element $w$ in the type $C$ Coxeter group, has a nonnegative integer expansion in terms of Schur functions. We provide a crystal theoretic explanation of this fact and give an explicit combinatorial description of the coefficients in the Schur expansion in terms of highest weight crystal elements.


10.37236/299 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeffrey Remmel ◽  
Manda Riehl

A large number of generating functions for permutation statistics can be obtained by applying homomorphisms to simple symmetric function identities. In particular, a large number of generating functions involving the number of descents of a permutation $\sigma$, $des(\sigma)$, arise in this way. For any given finite set $S$ of positive integers, we develop a method to produce similar generating functions for the set of permutations of the symmetric group $S_n$ whose descent set contains $S$. Our method will be to apply certain homomorphisms to symmetric function identities involving ribbon Schur functions.


10.37236/1383 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mike Zabrocki

The two parameter family of coefficients $K_{\lambda \mu}(q,t)$ introduced by Macdonald are conjectured to $(q,t)$ count the standard tableaux of shape $\lambda $. If this conjecture is correct, then there exist statistics $a_\mu(T)$ and $b_\mu(T)$ such that the family of symmetric functions $H_\mu[X;q,t] = \sum_\lambda K_{\lambda \mu}(q,t) s_\lambda [X]$ are generating functions for the standard tableaux of size $|\mu|$ in the sense that $H_\mu[X;q,t] = \sum_{T} q^{a_\mu(T)} t^{b_\mu(T)} s_{\lambda (T)}[X]$ where the sum is over standard tableau of of size $|\mu|$. We give a formula for a symmetric function operator $H_2^{qt}$ with the property that $H_2^{qt} H_{(2^a1^b)}[X;q,t]= H_{(2^{a+1}1^b)}[X;q,t]$. This operator has a combinatorial action on the Schur function basis. We use this Schur function action to show by induction that $H_{(2^a1^b)}[X;q,t]$ is the generating function for standard tableaux of size $2a+b$ (and hence that $K_{\lambda (2^a1^b)}(q,t)$ is a polynomial with non-negative integer coefficients). The inductive proof gives an algorithm for 'building' the standard tableaux of size $n+2$ from the standard tableaux of size $n$ and divides the standard tableaux into classes that are generalizations of the catabolism type. We show that reversing this construction gives the statistics $a_\mu(T)$ and $b_\mu(T)$ when $\mu$ is of the form $(2^a1^b)$ and that these statistics prove conjectures about the relationship between adjacent rows of the $(q,t)$-Kostka matrix that were suggested by Lynne Butler.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


10.37236/1820 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Clifford ◽  
Richard P. Stanley

We give a basis for the space spanned by the sum $\hat{s}_\lambda$ of the lowest degree terms in the expansion of the Schur symmetric functions $s_\lambda$ in terms of the power sum symmetric functions $p_\mu$, where deg$(p_i)=1$. These lowest degree terms correspond to minimal border strip tableaux of $\lambda$. The dimension of the space spanned by $\hat{s}_\lambda$, where $\lambda$ is a partition of $n$, is equal to the number of partitions of $n$ into parts differing by at least 2. Applying the Rogers-Ramanujan identity, the generating function also counts the number of partitions of $n$ into parts $5k+1$ and $5k-1$. We also show that a symmetric function closely related to $\hat{s}_\lambda$ has the same coefficients when expanded in terms of power sums or augmented monomial symmetric functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Sergey Kitaev ◽  
Andrew Niedermaier ◽  
Jeffrey Remmel ◽  
Manda Riehl

We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product of the cyclic group and the symmetric group . In particular, we derive the generating functions for the number of matches that occur in elements of for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of . Our research leads to connections to many known objects/structures yet to be explained combinatorially.


Sign in / Sign up

Export Citation Format

Share Document