scholarly journals COVID-19 emergencies around the globe: China’s experience in controlling COVID-19 and lessons learned

Author(s):  
Hao Jin ◽  
Ligong Lu ◽  
Junwei Liu ◽  
Min Cui

Abstract Motivation Nations around the world have been significantly impacted during the COVID-19 pandemic. China’s strategies for controlling COVID-19 offer valuable lessons for the global community. By learning from China’s experience and lessons, other countries could also find appropriate methods to control the pandemic. Problem statement What measures has China taken to control the pandemic? What lessons has China learned through this pandemic? Approach/methods The literature on China’s lessons and experience in controlling the COVID-19 pandemic was searched and reviewed. Related newspapers and magazines were also searched. Results China’s experience can be summed up as establishing temporary hospitals, strict isolation, experts with a knowledge of COVID-19, and measures that increase social distancing. Conclusions By learning from the experience of China, other countries in the world could eventually find the methods to control the COVID-19 pandemic. An emergency response system should be established in each country. Doctors and nurses are not alone in fighting COVID-19, and the entire world is helping them. With cooperation, current difficulties could be overcome.

2021 ◽  
pp. 2150013
Author(s):  
Peter John Marcotullio ◽  
Michael Schmeltz

Coronavirus disease 2019 (COVID-19) has impacted cities around the world. Global cities theory suggests that cities articulated to the global economy should be affected by such flows similarly. We start from this perspective and examine the impacts and outcomes of COVID-19 in three global cities: New York City, London and Tokyo. Our results focus on the speed, intensity, scale and characteristics of COVID-19 related cases and deaths in these cities and their respective countries. We find that while there are similarities between the experiences of global cities, there are also significant differences. The differences can be partially explained by policy, socio-economic and cultural differences. Our findings suggest that cities articulated to the global system could benefit from developing their own locally unique early warning and emergency response system, integrated with but separate from national systems.


2018 ◽  
Vol 18 (6) ◽  
pp. 1771-1783 ◽  
Author(s):  
Wei Wang ◽  
Hong Chen ◽  
Aihui Xu ◽  
Minhao Qu

Abstract. China's earthquake emergency response system has been improved by lessons learned from multiple earthquakes. This paper focuses on the Ms 7.0 earthquake that occurred in Jiuzhaigou County, Sichuan Province, China, on 8 August 2017 and assesses the emergency response activities of all levels of government as well as various departments, rescue teams, enterprises and public institutions and social organizations. The emergency response is compared to other large earthquakes that occurred in China in recent years. The lessons learned from these experiences can inform the emergency response to future disasters. The characteristics of the Jiuzhaigou earthquake and the emergency responses after the event are analysed. The response level and resource mobilization were appropriately adjusted as the disaster developed, and various departments worked together to conduct multi-sector joint rescue efforts. Additionally, professional rescue forces and participating social organizations were more rationally mobilized than during past earthquake emergency responses. A set of effective disaster relief command and coordination mechanisms was established to facilitate cooperation between multiple departments and social organizations under the leadership of the local government. Finally, new and more effective technologies played an important role in the emergency response and rescue efforts following the earthquake.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 131420-131429
Author(s):  
Kiril Antevski ◽  
Luigi Girletti ◽  
Carlos J. Bernardos ◽  
Antonio de la Oliva ◽  
Jorge Baranda ◽  
...  

Author(s):  
Alex Tripp

ABSTRACT In March 2019, TOTAL planned and executed the first of its kind Large Scale Exercise (LSE) in Nigeria. Before this operator led LSE, capping equipment had not been deployed in Africa. Since this was the first exercise of the sort to be undertaken in Nigeria, there were several objectives defined at the outset of the exercise: test the entire response chain (logistics, preparation, execution and communication);demonstrate to the Nigerian authorities that a comprehensive and efficient response could be executed in a timely manner; anddocument, record lessons learned and then feed them back to the local affiliate and others to improve future response operations For this exercise, TOTAL deployed its Subsea Emergency Response System (SERS) which was commissioned for construction at the beginning of 2012. Two systems were developed for drilling and production hydrocarbon blowout scenarios. The LSE's focus was to deploy the capping system while also taking the opportunity to simulate pumping dispersant. TOTAL has two SERS's that are stored in Pointe Noire, Congo and Luanda, Angola. Due to the readiness of the system in Congo (recently tested and the appropriate connector installed), it was chosen to be used for the LSE. An abandoned appraisal well was chosen for the exercise due to it being free from subsea infrastructure. The detailed work scope for the LSE was as follows: SERS ○ Controls Distribution Unit (CDU) deployment○ Flying Lead Deployment Frame (FLDF) deployment○ Diverter Spool Assembly (DSA) deployment○ Connection of the Hydraulic Flying Leads (HFL's) and Electric Flying Leads (EFL's)○ Landing the DSA and locking the connector by Remote Operated Vehicle (ROV)○ Performing an Acoustic Communication System (ACS) test Subsea Dispersant Injection (SSDI) ○ Deploying the Hose Deployment Frame (HDF)○ Deploying the routing manifold on Coiled Tubing (CT)○ Connecting all hoses with the ROV○ Simulating pumping dispersant over the well All equipment was successfully deployed and tested with all objectives achieved. The highlights of the operations were as follows: ○ 20 days from Congo SERS equipment loadout until the end of operations○ Approximately 27 hours from OneSubsea (OSS) arrival on the vessel until the DSA was locked on the wellhead○ DSA connector lock and unlock between 4 to 5 minutes○ 52.1 bbls of simulated dispersant pumped within a one hour timeframe


ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Hantao Zhao ◽  
Yunpeng Wang ◽  
Shiwu Li ◽  
Hongyan Mao

2020 ◽  
Author(s):  
Akmal Rustamov

The paper addresses the problem of increasing transportation safety due to usage of new possibilities provided by modern technologies. The proposed approach extends such systems as ERA-GLONASS and eCall via service network composition enabling not only transmitting additional information but also information fusion for defining required emergency means as well as planning for a whole emergency response operation. The main idea of the approach is to model the cyber physical human system components by sets of services representing them. The services are provided with the capability of self- contextualization to autonomously adapt their behaviors to the context of the car-driver system. The approach is illustrated via an accident emergency situation response scenario. “ERA-GLONASS” is the Russian state emergency response system for accidents, aimed at improving road safety and reducing the death rate from accidents by reducing the time for warning emergency services. In fact, this is a partially copied European e Call system with some differences in the data being transmitted and partly backward compatible with the European parent. The principle of the system is quite simple and logical: in the event of an accident, the module built into the car in fully automatic mode and without human intervention determines the severity of the accident, determines the vehicle’s location via GLONASS or GPS, establishes connection with the system infrastructure and in accordance with the protocol, transfers the necessary data on the accident (a certain distress signal). Having received the distress signal, the employee of the call center of the system operator should call the on-board device and find out what happened. If no one answers, send the received data to Sistema-112 and send it to the exact coordinates of the team of rescuers and doctors, and the last one to arrive at the place is given 20 minutes. And all this, I repeat, without the participation of a person: even if people caught in an accident will not be able to independently call emergency services, the data on the accident will still be transferred. In this work intended to add some information about applying system project in Uzbek Roads especially mountain regions like “Kamchik” pass. The Kamchik Pass is a high mountain pass at an elevation of 2.306 m above the sea level, located in the Qurama Mountains in eastern Uzbekistan and its length is about 88km.The road to reach the pass is asphalted, but there are rough sections where the asphalt has disappeared. It’s called A373. The old road over the pass was by passed by a tunnel built in 1999. On the horizon, the snow-capped peaks of the Fan Mountains come into view. The pass is located in the Fergana Valley between the Tashkent and Namangan Regions.


Sign in / Sign up

Export Citation Format

Share Document