scholarly journals Sampling Hazelnuts for Aflatoxin: Uncertainty Associated with Sampling, Sample Preparation, and Analysis

2006 ◽  
Vol 89 (4) ◽  
pp. 1004-1011 ◽  
Author(s):  
Guner Ozay ◽  
Ferda Seyhan ◽  
Aysun Yilmaz ◽  
Thomas B Whitaker ◽  
Andrew B Slate ◽  
...  

Abstract The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a highperformance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.

2000 ◽  
Vol 83 (5) ◽  
pp. 1264-1269 ◽  
Author(s):  
Anders S Johansson ◽  
Thomas B Whitaker ◽  
Winston M Hagler ◽  
Francis G Giesbrecht ◽  
James H Young ◽  
...  

Abstract The variability associated with testing lots of shelled corn for aflatoxin was investigated. Eighteen lots of shelled corn were tested for aflatoxin contamination. The total variance associated with testing shelled corn was estimated and partitioned into sampling, sample preparation, and analytical variances. All variances increased as aflatoxin concentration increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. Test results on a lot with 20 parts per billion aflatoxin using a 1.13 kg sample, a Romer mill, 50 g subsamples, and liquid chromatographic analysis showed that the total, sampling, sample preparation, and analytical variances were 274.9 (CV = 82.9%), 214.0 (CV = 73.1%), 56.3 (CV = 37.5%), and 4.6 (CV = 10.7%), respectively. The percentage of the total variance for sampling, sample preparation, and analytical was 77.8, 20.5, and 1.7, respectively.


2006 ◽  
Vol 89 (4) ◽  
pp. 1027-1034 ◽  
Author(s):  
Thomas B Whitaker ◽  
Andrew B Slate ◽  
Merle Jacobs ◽  
J Michael Hurley ◽  
Julie G Adams ◽  
...  

Abstract Domestic and international regulatory limits have been established for aflatoxin in almonds and other tree nuts. It is difficult to obtain an accurate and precise estimate of the true aflatoxin concentration in a bulk lot because of the uncertainty associated with the sampling, sample preparation, and analytical steps of the aflatoxin test procedure. To evaluate the performance of aflatoxin sampling plans, the uncertainty associated with sampling lots of shelled almonds for aflatoxin was investigated. Twenty lots of shelled almonds were sampled for aflatoxin contamination. The total variance associated with measuring B1 and total aflatoxins in bulk almond lots was estimated and partitioned into sampling, sample preparation, and analytical variance components. All variances were found to increase with an increase in aflatoxin concentration (both B1 and total). By using regression analysis, mathematical expressions were developed to predict the relationship between each variance component (total, sampling, sample preparation, and analysis variances) and aflatoxin concentration. Variance estimates were the same for B1 and total aflatoxins. The mathematical relationships can be used to estimate each variance for a given sample size, subsample size, and number of analyses other than that measured in the study. When a lot with total aflatoxins at 15 ng/g was tested by using a 10 kg sample, a vertical cutter mixer type of mill, a 100 g subsample, and high-performance liquid chromatography analysis, the sampling, sample preparation, analytical, and total variances (coefficient of variation, CV) were 394.7 (CV, 132.4%), 14.7 (CV, 25.5%), 0.8 (CV, 6.1%), and 410.2 (CV, 135.0%), respectively. The percentages of the total variance associated with sampling, sample preparation, and analytical steps were 96.2, 3.6, and 0.2, respectively.


2004 ◽  
Vol 87 (4) ◽  
pp. 884-891 ◽  
Author(s):  
Eugenia A Vargas ◽  
Thomas B Whitaker ◽  
Eliene A Santos ◽  
Andrew B Slate ◽  
Francisco B Lima ◽  
...  

Abstract The variability associated with testing lots of green coffee beans for ochratoxin A (OTA) was investigated. Twenty-five lots of green coffee were tested for OTA contamination. The total variance associated with testing green coffee was estimated and partitioned into sampling, sample preparation, and analytical variances. All variances increased with an increase in OTA concentration. Using regression analysis, mathematical expressions were developed to model the relationship between OTA concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific OTA concentration. Testing a lot with 5 μg/kg OTA using a 1 kg sample, Romer RAS mill, 25 g subsamples, and liquid chromatography analysis, the total, sampling, sample preparation, and analytical variances were 10.75 (coefficient of variation [CV] = 65.6%), 7.80 (CV = 55.8%), 2.84 (CV = 33.7%), and 0.11 (CV = 6.6%), respectively. The total variance for sampling, sample preparation, and analytical were 73, 26, and 1%, respectively.


2000 ◽  
Vol 83 (5) ◽  
pp. 1285-1292 ◽  
Author(s):  
Thomas B Whitaker ◽  
Winston M Hagler ◽  
Francis G Giesbrecht ◽  
Anders S Johansson

Abstract The variability associated with testing wheat for deoxynivalenol (DON) was measured using a 0.454 kg sample, Romer mill, 25 g comminuted subsample, and the Romer Fluoroquant analytical method. The total variability was partitioned into sampling, sample preparation, and analytical variability components. Each variance component was a function of the DON concentration and equations were developed to predict each variance component using regression techniques. The effect of sample size, subsample size, and number of aliquots on reducing the variability of the DON test procedure was also determined. For the test procedure, the coefficient of variation (CV) associated with testing wheat at 5 ppm was 13.4%. The CVs associated with sampling, sample preparation, and analysis were 6.3, 10.0, and 6.3%, respectively. For the sample variation, a 0.454 kg sample was used; for the sample preparation variation, a Romer mill and a 25 g subsample were used; for the analytical variation, the Romer Fluoroquant method was used. The CVs associated with testing wheat are relatively small compared to the CV associated with testing other commodities for other mycotoxins, such as aflatoxin in peanuts. Even when the small sample size of 0.454 kg was used, the sampling variation was not the largest source of error as found in other mycotoxin test procedures.


2017 ◽  
Vol 10 (1) ◽  
pp. 31-40 ◽  
Author(s):  
H. Ozer ◽  
H.I. Oktay Basegmez ◽  
T.B. Whitaker ◽  
A.B. Slate ◽  
F.G. Giesbrecht

The variability associated with the aflatoxin test procedure used to estimate aflatoxins in bulk shipments of dried figs was investigated. Sixteen 10 kg laboratory samples were taken from each of twenty commercial bulk lots of dried figs suspected of aflatoxin contamination. Two 55 g test portions were taken from each comminuted laboratory sample using water-slurry comminution methods. Finally, two aliquots from the test portion/solvent blend were analysed for both aflatoxin B1 and total aflatoxins. The total variance associated with testing dried figs for aflatoxins was measured and partitioned into sampling, sample preparation and analytical variance components (total variance is equal to the sum of the sampling variance, sample preparation variance, and analytical variance). Each variance component increased as aflatoxin concentration increased. Using regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation and analytical variances when testing dried figs for aflatoxins. The regression equations were modified to estimate the variances for any sample size, test portion size, and number of analyses for a specific lot aflatoxin concentration. When using the above aflatoxin test procedure to sample a fig lot at 10 μg/kg total aflatoxins, the sampling, sample preparation, analytical, and total variances were 47.20, 0.29, 0.13, and 47.62, respectively. The sampling, sample preparation, and analytical steps accounted for 99.1, 0.6, and 0.3% of the total variance, respectively. For the aflatoxin test procedure used in this study, the sampling step is the largest source of variability.


1994 ◽  
Vol 77 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Thomas B Whitaker ◽  
Floyd E Dowell ◽  
Winston M Hagler ◽  
Francis G Giesbrecht ◽  
Jeremy Wu

Abstract Forty farmers’ stock lots of runner peanuts suspected of containing aflatoxin were identified by the Federal State Inspection Service by using the visual Aspergillus flavus inspection method. A 900 kg portion was removed from each lot and divided into 50 samples each of 2.27 kg (5 lb), 4.54 kg (10 lb), and 6.81 kg (15 lb) weights. For each sample, foreign material was removed, pods were shelled, and all kernels were comminuted for 7 min in a vertical cutter mixer. A100 g subsample was removed from each comminuted sample for aflatoxin analysis by liquid chromatography (LC). The total variance associated with each sample size was estimated. The total variance was also partitioned into sampling, sample preparation, and analytical variance components. Each variance component was shown to be a function of aflatoxin concentration. By using regression techniques, the relationship between variance and aflatoxin concentration was developed for each variance component. The total, sampling, sample preparation, and analytical variances associated with testing a lot at 100 ppb with a 2.27 kg sample, 100 g subsample, and using LC analytical techniques are 25 378,23 533,1830, and 15, respectively. Sampling, sample preparation, and analysis account for 92.7, 7.2, and 0.1% of the total variability, respectively.


2004 ◽  
Vol 87 (4) ◽  
pp. 943-949 ◽  
Author(s):  
Mary W Trucksess ◽  
Thomas B Whitaker ◽  
Andrew B Slate ◽  
Kristina M Williams ◽  
Vickery A Brewer ◽  
...  

Abstract Peanuts contain proteins that can cause severe allergic reactions in some sensitized individuals. Studies were conducted to determine the percentage of recovery by an enzyme-linked immunosorbent assay (ELISA) method in the analysis for peanuts in energy bars and milk chocolate and to determine the sampling, subsampling, and analytical variances associated with testing energy bars and milk chocolate for peanuts. Food products containing chocolate were selected because their composition makes sample preparation for subsampling difficult. Peanut-contaminated energy bars, noncontaminated energy bars, incurred milk chocolate containing known levels of peanuts, and peanut-free milk chocolate were used. A commercially available ELISA kit was used for analysis. The sampling, sample preparation, and analytical variances associated with each step of the test procedure to measure peanut protein were determined for energy bars. The sample preparation and analytical variances were determined for milk chocolate. Variances were found to be functions of peanut concentration. Sampling and subsampling variability associated with energy bars accounted for 96.6% of the total testing variability. Subsampling variability associated with powdered milk chocolate accounted for >60% of the total testing variability. The variability among peanut test results can be reduced by increasing sample size, subsample size, and number of analyses. For energy bars the effect of increasing sample size from 1 to 4 bars, subsample size from 5 to 20 g, and number of aliquots quantified from 1 to 2 on reducing the sampling, sample preparation, and analytical variance was demonstrated. For powdered milk chocolate, the effects of increasing subsample size from 5 to 20 g and number of aliquots quantified from 1 to 2 on reducing sample preparation and analytical variances were demonstrated. This study serves as a template for application to other foods, and for extrapolation to different sizes of samples and subsamples as well as numbers of analyses.


2019 ◽  
Vol 35 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Mahbuba Akter Lubna ◽  
Mita Debnath ◽  
Farzana Hossaini

Current study investigated the occurrence of aflatoxin contamination in poultry feed and feed materials in different poultry farms and feed factories in Bangladesh. A total of 100 samples of finished feed and raw feed materials were collected and tested through direct competitive Enzyme-Linked Immunosorbent Assay (ELISA) for total aflatoxin detection. Overall, 97% samples (n=97/100) in our study, were found positive for aflatoxin contamination. Among finished feed categories, layer grower feed contained highest level of aflatoxin with a mean value of 21.64 ppb whereas layer feed was less susceptible for aflatoxin contamination (mean value 9.49 ppb). Between raw feed materials, maize samples were highly contaminated (n=15/15, 100%) with aflatoxin while 86.67% soybean samples showed positive result. Twenty one percent (21%) of the samples in our study contained aflatoxin concentration more than the acceptable limit employed by USFDA and many other countries which might pose severe health risk to poultry and human consumer. Proper surveillance and immediate control measures should be taken to ensure safe poultry feed and feed materials. Bangladesh J Microbiol, Volume 35 Number 1 June 2018, pp 75-78


Sign in / Sign up

Export Citation Format

Share Document