scholarly journals Rapid and Cost-Effective Determination of Acrylamide in Coffee by Planar Chromatography and Fluorescence Detection After Derivatization with Dansulfinic Acid

2009 ◽  
Vol 92 (3) ◽  
pp. 725-729 ◽  
Author(s):  
Alexander Alpmann ◽  
Gertrud Morlock

Abstract A new method has been developed for the determination of acrylamide in ground coffee by planar chromatography using prechromatographic in situ derivatization with dansulfinic acid. After pressurized fluid extraction of acrylamide from the coffee samples, the extracts were passed through activated carbon and concentrated. These extracts were applied onto a silica gel 60 HPTLC plate and oversprayed with dansulfinic acid. By heating the plate, acrylamide was derivatized into the fluorescent product dansylpropanamide. The chromatographic separation with ethyl acetatetert.-butyl methyl ether (8 + 2, v/v) mobile phase was followed by densitometric quantification at 254/>400 nm using a 4 point calibration via the standard addition method over the whole system for which acrylamide was added at different concentrations at the beginning of the extraction process. The method was validated for commercial coffee. The linearity over the whole procedure showed determination coefficients between 0.9995 and 0.9825 (n = 6). Limit of quantitation at a signal-to-noise ratio of 10 was determined to be 48 g/kg. The within-run precision (relative standard deviation, n = 6) of the chromatographic method was 3. Commercial coffee samples analyzed showed acrylamide contents between 52 and 191 g/kg, which was in correlation with amounts reported in previous publications.

2018 ◽  
Vol 5 (4) ◽  
pp. 171500 ◽  
Author(s):  
N. I. Mohd ◽  
N. N. M. Zain ◽  
M. Raoov ◽  
S. Mohamad

A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient ( R 2 ) in the range of 0.991–0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l −1 (atrazine) and 1.22 µg l −1 (propazine), and the limit of quantitation was 3.54 µg l −1 (atrazine) and 4.07 µg l −1 (propazine). Satisfactory recoveries in the range of 81–108% were determined in milk samples at 5 and 1000 µg l −1 , respectively, with low relative standard deviation, n  = 3 of 0.301–7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.


2009 ◽  
Vol 15 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Nagaraju Rajendraprasad ◽  
Basavaiah Vinay

Two simple, rapid, reliable and cost-effective methods based on titrimetry in non-aqueous medium are described for the determination of olanzapine in pharmaceuticals. In these methods, the drug dissolved in the glacial acetic acid was titrated with the acetous perchloric acid with visual and potentiometric end point detection, crystal violet being used as the indicator for visual titration. The methods are applicable over 1-15 mg range of olanzapine. The procedures were applied to determine olanzapine in pharmaceutical products and the results were found to be in a good agreement with those obtained by the reference method. Associated pharmaceutical materials did not interfere. The precision results, expressed by inter-day and intra-day relative standard deviation values, were satisfactory, higher than 2%. The accuracy was satisfactory as well. The methods proved to be suitable for the analysis of olanzapine in bulk drug and in tablets. The accuracy and reliability of the methods were further ascertained by recovery studies via a standard addition technique with percent recoveries in the range 97.51-103.7% with a standard deviation of less than 2%.


Author(s):  
Mohamed A Hammad ◽  
Amira H Kamal ◽  
Reham E Kannouma ◽  
Fotouh R Mansour

Abstract A validated method for preconcentration and determination of nateglinide in plasma was developed using vortex-assisted dispersive liquid–liquid microextraction. Different variables that affect extraction efficiency were studied and optimized, including type and volume of extractant, type and volume of disperser, pH of diluent, salt addition effect, centrifugation and vortex time. Nateglinide was extracted using 30 μL of 1-octanol as an extractant and 200 μL of methanol as a disperser. The enrichment factor reached 330 under the optimum conditions. High-performance liquid chromatography/ultraviolet was used for detection using phosphate buffer (pH 2.5, 10 mM): acetonitrile (45:55, v/v) as a mobile phase at a flow rate of 1 mL/min. The method was linear over the range of 50–20,000 ng/mL with a limit of detection of 15 ng/mL (signal-to-noise ratio = 3). Intra- and inter-day precision had %relative standard deviation <6% (n = 3) and the %recoveries were found to be between 102.5 and 105.9%. The proposed method is simple, sensitive, eco-friendly, cost-effective and powerful for microextraction of nateglinide from human plasma samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Boonyadist Vongsak ◽  
Pongtip Sithisarn ◽  
Wandee Gritsanapan

Moringa oleiferaLamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatography (TLC-)densitometric method was developed and validated for simultaneous quantification of these major components in the 70% ethanolic extracts ofM. oleiferaleaves collected from 12 locations. The average amounts of crypto-chlorogenic acid, isoquercetin, and astragalin were found to be 0.0473, 0.0427, and 0.0534% dry weight, respectively. The method was validated for linearity, precision, accuracy, limit of detection, limit of quantitation, and robustness. The linearity was obtained in the range of 100–500 ng/spot with a correlation coefficient (r) over 0.9961. Intraday and interday precisions demonstrated relative standard deviations of less than 5%. The accuracy of the method was confirmed by determining the recovery. The average recoveries of each component from the extracts were in the range of 98.28 to 99.65%. Additionally, the leaves from Chiang Mai province contained the highest amounts of all active components. The proposed TLC-densitometric method was simple, accurate, precise, and cost-effective for routine quality controlling ofM. oleiferaleaf extracts.


1986 ◽  
Vol 51 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Jan Langmaier ◽  
František Opekar

Gold porous membrane electrode has been used for the potentiometric determination of small amounts of sulfur dioxide absorbed in the solutions of sodium tetrachloromercurate or sodium hydroxide. Sulfur dioxide is released by the reaction with an acid into a stream of nitrogen and led to the electrode immersed into the solution of iodine monochloride. Part of SO2 penetrates through the membrane pores into the solution where it is oxidized. The electrode redox potential change is a measure of the SO2 concentration in the absorption solution. In the solution of 1 . 10-5 M[ICl2]- in 0.02 M-HClO4 the limit of quantitation was found to be 0.07 ng SO2 . ml-1. The relative standard deviations of 1.4% and 2.5% were found for the determinations of 10 ng and 0.5 ng of SO2, respectively. Higher concentrations of H2S interfere only in the hydroxide solution. About 10 samples can be analyzed per one hour.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vaibhav S. Adhao ◽  
Suraj R. Chaudhari ◽  
Jaya P. Ambhore ◽  
Sunil Sangolkar ◽  
Raju R. Thenge ◽  
...  

Abstract Background Human immunodeficiency virus (HIV) causes severe life-threatening condition, i.e., AIDS. HIV destabilises an individual’s ability to prevent infection. Therefore, the combine medication lamivudine (LVD) and tenofovir disoproxil fumarate (TDF) are prescribed to suppress the amount of HIV infection in individual’s body; thus, the individual’s immune system could function properly. Consequently, the objective of present research work was to investigate robust and sensitive liquid chromatography avenue for simultaneous determination of lamivudine and tenofovir disoproxil fumarate in pure material and combined dosage form. Results The reversed-phase chromatographic separation has been performed through Hypersil BDS C18 column using solvent system composed of 10 mM potassium dihydrogen phosphate (pH 4.0): acetonitrile (60:40% v/v). The determination was executed at 30 oC at 1 mL/min rate for flow of solvent system through column. The eluents of column were monitored at 265 nm using Photodiode Array detector has revealed admirable retention times, i.e., 4.67 and 8.78 min for both drugs, respectively. The calibration curve demonstrated excellent linearity in the range of 10–50 μg/mL for lamivudine and tenofovir disoproxil fumarate with better determination coefficients was more than (r2 0.999). Conclusion The estimable method was effectively validated with respect to accuracy, precision, sensitive (limit of detection and limit of quantitation), robustness, ruggedness, and for selectivity and specificity. The value less than 2 for percentage relative standard deviation for accuracy, precision, robustness, and ruggedness satisfying the acceptance criteria as per procedure of International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.


2013 ◽  
Vol 6 (1) ◽  
pp. 133-141 ◽  
Author(s):  
S. Binte Amir ◽  
M. A. Hossain ◽  
M. A. Mazid

The present study was undertaken to develop and validate a simple, sensitive, accurate, precise and reproducible UV spectrophotometric method for cefuroxime axetil using methanol as solvent. In this method the simple UV spectrum of cefuroxime axetil in methanol was obtained which exhibits absorption maxima (?max) at 278 nm. The quantitative determination of the drug was carried out at 278 nm and Beer’s law was obeyed in the range of (0.80-3.60) µg/ml. The proposed method was applied to pharmaceutical formulation and percent amount of drug estimated (95.6% and 96%) was found in good agreement with the label claim. The developed method was successfully validated with respect to linearity, specificity, accuracy and precision. The method was shown linear in the mentioned concentrations having line equation y = 0.05x + 0.048 with correlation coefficient of 0.995. The recovery values for cefuroxime axetil ranged from 99.85-100.05. The relative standard deviation of six replicates of assay was less than 2%. The percent relative standard deviations of inter-day precision ranged between 1.45-1.92% and intra-day precision of cefuroxime axetil was 0.96-1.51%. Hence, proposed method was precise, accurate and cost effective.  Keywords: UV-Vis spectrophotometer; Method validation; Cefuroxime axetil; Recovery studies.  © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.   doi: http://dx.doi.org/10.3329/jsr.v6i1.14879 J. Sci. Res. 6 (1), 133-141 (2013)  


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


2012 ◽  
Vol 11 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Maizbha Uddin Ahmed ◽  
Mohammad Safiqul Islam ◽  
Tasmin Ara Sultana ◽  
AGM Mostofa ◽  
Muhammad Shahdaat Bin Sayeed ◽  
...  

Azithromycin is an effective and well-known antimicrobial agent. In the present study, a simple, sensitive and specific LC/MS/MS method has been developed and validated for the quantification of Azithromycin in  human serum samples using Clarithromycin as internal standard. Azithromycin was extracted from biological matrix  by using solid phase extraction process. The chromatographic separation was performed on Luna C18 (3 ?, 2x150   mm) column with a mobile phase consisting of 35 mM ammonium acetate buffer (mobile phase-A) and acetonitrile  and methanol in ratio of 90:10 ( as mobile phase-B) at a flow rate of 0.25 mL/min. The method was validated over a  linear concentration range of 0.5?50.0 ng/mL and limit of quantification (LOQ) was 0.5 ng/mL with a coefficient of  correlation (r2) = 0.9998. The intra-day and inter-day precision expressed as relative standard deviation were 1.64% – 8.43% and 2.32% – 9.92%, respectively. The average recovery of azithromycin from serum was 98.11%. The method  was successfully applied to a pharmacokinetic study after oral administration of Azithromycin 200 mg/5 ml suspension in healthy Bangladeshi volunteers. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12488 Dhaka Univ. J. Pharm. Sci. 11(1): 55-63, 2012 (June)


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Sign in / Sign up

Export Citation Format

Share Document