242 Divergent Selection for Early Puberty Impacts KNDy Neuron Gene Expression in Gilts
Abstract Advancing gilt puberty onset is financially desirable for swine production. Neurons in the hypothalamic arcuate nucleus (ARC) that co-express kisspeptin, neurokinin B (NKB), and dynorphin (i.e. KNDy cells) are believed to control gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, but their role in gilt pubertal development is unknown. We hypothesized that puberty onset in gilts would coincide with greater expression of mRNA for kisspeptin and NKB, and less expression of dynorphin. Using fluorescent in situ hybridization (RNAscope), we examined expression of kisspeptin, NKB, and dynorphin in pre- and postpubertal gilts from two genetic lines divergently selected for age at puberty. Prepubertal (n = 6/line) and postpubertal (n = 6/line) gilts were used, and postpubertal animals all received Matrix (0.22% altrenogest) orally for 14 days with tissue collection two days after the final dose. Gilts were euthanized and heads were perfused with 8 L of 4% paraformaldehyde (PFA). Hypothalamic brain tissue was removed, placed in 4% PFA for 24 hrs, and then in 20% sucrose until sectioning (50 µm). Sectioned tissue was stored in cryopreservative at -20°C until RNAscope. Data were analyzed using SAS software (Version 9.4, SAS Institute, Cary NC) with significance declared at P < 0.05. We determined mRNA expression for kisspeptin was not different between groups (P > 0.05). In addition, we found that mRNA expression for NKB was higher in prepubertal gilts compared to postpubertal gilts (P < 0.05) but was not different between lines; mRNA expression was lowest in postpubertal late puberty gilts. Furthermore, total number of dynorphin cells were higher in prepubertal gilts compared to postpubertal gilts (P < 0.05), while individual cell mRNA expression for dynorphin was greatest in postpubertal early puberty gilts (P < 0.05). Taken together, we suggest puberty onset in gilts is more dependent on NKB and dynorphin than kisspeptin.