scholarly journals Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lambs

2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Sue A McCoard ◽  
Omar Cristobal-Carballo ◽  
Frederik W Knol ◽  
Axel Heiser ◽  
Muhammed A Khan ◽  
...  

Abstract AbstractThis study evaluated the effect of early weaning (EW) of artificially reared lambs using a restricted milk replacer (MR) feeding and step-down weaning system on the short- and long-term effects on growth, feed intake, selected blood metabolites and hormones, body composition, and small intestine development. Mixed-sex twin-born 2 to 5 d old lambs were randomly allocated to individual pens and fed MR at 20% of initial individual BW in week 1 and 15% in week 2 followed by weaning off MR by the end of week 4 (EW; n = 16) or week 6 (Control; Ctrl, n = 16) using a step-down procedure. Concentrate starter and fiber diets were offered ad libitum to week 9, then gradually removed over a 10-d period. All lambs were managed as a single group on pasture from weeks 6 to 16 of the trial. Feed intake was recorded daily in the first 6 wk, and BWs recorded weekly. At weeks 2, 4, 6, and 8, and pre- and postclostridial vaccination at week 8, blood samples were collected for analysis of selected blood metabolites, IGF-1, and immune function. Body composition was evaluated in eight animals per group at weeks 4 and 16 after euthanasia, and duodenal samples collected for histomorphometric evaluation. Early weaned lambs had lower DM, ME, CP, and NDF intake than Ctrl lambs at 21, 15, 21, and 36 d of rearing, respectively (P < 0.001), driven by lower intakes of MR from day 15 (P < 0.001) as per the experimental design, and lower total DMI of fiber (P = 0.001) from 21 to 42 d of rearing. Lamb BW tended (P = 0.097) to be lower in EW than Ctrl lambs from 5 to 10 wk of rearing, with lower ADG in EW lambs from weeks 3 to 6 (P = 0.041). Early weaning had negligible effects on duodenal morphology, organ, and carcass weights at weeks 4 and 16. Plasma metabolites (urea nitrogen, triglycerides, NEFA, glucose, and total protein) were similar between groups, while β-hydroxybutyrate was greater in EW than Ctrl lambs at weeks 4 and 6 (P = 0.018) but not week 8 indicative of early rumen development. Serum IGF-1 tended to be lower in EW than Ctrl lambs from weeks 2 to 6 only (P = 0.065). All lambs developed antibody responses postvaccination and there was no effect of treatment (P = 0.528). The results of this study illustrate that artificially reared lambs can be weaned off MR by 4 or 6 wk of rearing without compromising growth, small intestine morphology, major organ development, and body composition, nor immune function at either 4 (preweaning) or 16 (postweaning) wk of age.

Author(s):  
Stefanie M.P. Kouwenhoven ◽  
Nadja Antl ◽  
Martijn J.J. Finken ◽  
Jos W.R. Twisk ◽  
Eline M. van der Beek ◽  
...  

1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


2004 ◽  
Vol 84 (2) ◽  
pp. 177-185 ◽  
Author(s):  
F. S. Schenkel ◽  
S. P. Miller ◽  
J. W. Wilton

Genetic associations between feed efficiency, growth, and live ultrasound measured body composition traits were studied in purebred beef bulls of six breeds in Ontario bull test stations from 1991 to 2000. Feed traits included average daily feed intake (FI), feed conversion ratio (FCR), and residual feed intake [feed intake adjusted for production alone (RFIp) or production and backfat thickness (RFIb)]. Growth traits were average daily weight gain (ADG), mid-test metabolic weight (MW), hip height (HH), and scrotal circumference (SC). Body composition traits included ultrasound backfat thickness (BF), longissimus muscle area (LMA), and predicted percentage of intramuscular fat (IFAT). Bulls were measured every 28 d for weight and individual feed intake, and at the end of test for ultrasound body composition traits. Number of records per trait ranged from 2284 (FI) to 13 319 (ADG). Fixed effects of test group, breed and end of test age (within breed), and random effects of animal and herd of origin were modeled using REML bivariate analyses for all traits. Heritability estimates were moderate for all traits (0.30 to 0.55), except for IFAT (0.14). The genetic correlation between RFIp and RFIb was high (0.99) within breeds, but breeds ranked differently with respect to RFIp and RFIb. Genetic correlations of RFIb with ADG and backfat thickness were essentially zero, which indicate that selection on residual feed intake could be implemented to reduce feed intake and improve feed conversion without compromising growth or changing levels of subcutaneous fat. Key words: Central test, genetic correlation, heritability, residual feed intake


Sign in / Sign up

Export Citation Format

Share Document