scholarly journals Effects of Climate on the Variation in Abundance of Three Tick Species in Illinois

Author(s):  
E A Bacon ◽  
H Kopsco ◽  
P Gronemeyer ◽  
N Mateus-Pinilla ◽  
R L Smith

Abstract The range of ticks in North America has been steadily increasing likely, in part, due to climate change. Along with it, there has been a rise in cases of tick-borne disease. Among those medically important tick species of particular concern are Ixodes scapularis Say (Acari: Ixodidae), Dermacentor variabilis Say (Acari: Ixodidae), and Amblyomma americanum Linneaus (Acari: Ixodidae). The aim of this study was to determine if climate factors explain existing differences in abundance of the three aforementioned tick species between two climatically different regions of Illinois (Central and Southern), and if climate variables impact each species differently. We used both zero-inflated regression approaches and Bayesian network analyses to assess relationships among environmental variables and tick abundance. Results suggested that the maximum average temperature and total precipitation are associated with differential impact on species abundance and that this difference varied by region. Results also reinforced a differential level of resistance to desiccation among these tick species. Our findings help to further define risk periods of tick exposure for the general public, and reinforce the importance of responding to each tick species differently.

Author(s):  
Daniel C Mathisson ◽  
Sara M Kross ◽  
Matthew I Palmer ◽  
Maria A Diuk-Wasser

Abstract Tick-borne illnesses have been on the rise in the United States, with reported cases up sharply in the past two decades. In this literature review, we synthesize the available research on the relationship between vegetation and tick abundance for four tick species in the northeastern United States that are of potential medical importance to humans. The blacklegged tick (Ixodes scapularis) (Say; Acari: Ixodidae) is found to be positively associated with closed canopy forests and dense vegetation thickets, and negatively associated with open canopy environments, such as grasslands or old agricultural fields. The American dog tick (Dermacentor variabilis) (Say; Acari: Ixodidae) has little habitat overlap with I. scapularis, with abundance highest in grasses and open-canopy fields. The lone star tick (Amblyomma americanum) (Linnaeus; Acari: Ixodidae) is a habitat generalist without consistent associations with particular types of vegetation. The habitat associations of the recently introduced Asian longhorned tick (Haemaphysalis longicornis) (Neumann; Acari: Ixodidae) in the northeastern United States, and in other regions where it has invaded, are still unknown, although based on studies in its native range, it is likely to be found in grasslands and open-canopy habitats.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 235 ◽  
Author(s):  
Glass ◽  
Ganser ◽  
Wisely ◽  
Kessler

A statewide survey of questing ixodid ticks in mainland Florida was developed consistent with U.S. CDC standards to maximize the amount of epidemiologic and environmental data gathered. Survey sites were stratified by climatic zones and proportional to recognized land cover categories. A total of 560 transects on 41 sites within the state were sampled repeatedly by flagging between 2015 and 2018. Four tick species were collected; Amblyomma americanum, Amblyomma maculatum, Ixodes scapularis and Dermacentor variabilis. All species were more commonly found in northern and central regions of the state than in southern and western regions. Adult I. scapularis were active from autumn through spring and complementary to adult A. americanum and D. variabilis. Standardized survey methods help reduce sampling biases and better characterize risk from the species surveyed. However, differences in the attractiveness of collection methods for different tick species makes cross-species comparisons a continuing challenge.


2021 ◽  
pp. 188-192
Author(s):  
Lars Eisen ◽  
Rebecca Eisen

Abstract This expert opinion focuses on climate-related factors and how these interact with landscape and tick host/pathogen reservoir factors to impact the vector potential for the three most notable North American human-biting tick species: Ixodes scapularis, Amblyomma americanum and the American dog tick, Dermacentor variabilis.


Acarologia ◽  
2018 ◽  
Vol 58 (4) ◽  
pp. 989-994
Author(s):  
Dakota A. Shade

Ticks are important ectoparasites due to their ability to transmit harmful pathogens and their study is thus significant for medical and veterinary practices around the world. Fluorescence has been found in numerous biological organisms, including ticks. However, the overall function, evolutionary significance, and distribution of fluorescence in ticks are unknown. This study examined tick fluorescence in purchased, unfed adult Amblyomma americanum (Linnaeus), A. maculatum Koch, Dermacentor variabilis (Say), D. andersoni (Stiles), Ixodes scapularis Say, and Rhipicephalus sanguineus Latreille ticks. An Olympus SZX7 microscope and NightSea SFA system with ultraviolet (UV) and royal blue sets were used for observing tick morphology. Ticks were shown to have widespread fluorescence in all species observed. The results corroborated previous studies, but with the addition of more fluorescent structures. Tick fluorescence could potentially play roles in communication or predator avoidance. Studies on tick behavior in conjunction with fluorescence are now called for to elucidate potential roles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250272
Author(s):  
Ali Hroobi ◽  
Gunavanthi D. Boorgula ◽  
David Gordon ◽  
Jianfa Bai ◽  
Doug Goodin ◽  
...  

Between March 2014 and February 2017, host-seeking ticks were collected during the late spring and summer months seasonally, and as well as continually through all seasons from several sites in a periurban environment in Pittsburg, Kansas, located in the Central Midwestern United States. All three post-emergent life-stages of Amblyomma americanum, and the adults of three other ticks viz. Dermacentor variabilis, A. maculatum, and Ixodes scapularis were collected using the flagging method, and were taxonomically identified using morphological and molecular methods. A total of 15946 ticks were collected from these sites. A vast majority of the ticks collected over the three-year study period was A. americanum (79.01%). The three other species collected included D. variabilis (13.10%), A. maculatum (7.15%), and Ixodes scapularis (0.73%). More female ticks of each species were collected throughout the study period from all sites, and a unimodal activity period was noted for all four species. The diversity, composition, and phenology of these medically significant tick species are discussed.


2019 ◽  
Vol 57 (3) ◽  
pp. 872-883 ◽  
Author(s):  
Beth Gilliam ◽  
Peg Gronemeyer ◽  
Sulagna Chakraborty ◽  
Fikriyah Winata ◽  
Lee Ann Lyons ◽  
...  

Abstract We updated the Illinois historical (1905–December 2017) distribution and status (not reported, reported or established) maps for Amblyomma americanum (L.) (Acari: Ixodidae), Dermacentor variabilis (Say) (Acari: Ixodidae), and Ixodes scapularis (Say) (Acari: Ixodidae) by compiling publicly available, previously unexplored or newly identified published and unpublished data (untapped data). Primary data sources offered specific tick-level information, followed by secondary and tertiary data sources. For A. americanum, D. variabilis, and I. scapularis, primary data contributed to 90% (4,045/4,482), 80% (2,124/2,640), and 32% (3,490/10,898) tick records vs 10%, 20%, and 68%, respectively from secondary data; primary data updated status in 95% (62/65), 94% (51/54) and in 90% (9/10) of the updated counties for each of these tick species; by 1985 there were tick records in 6%, 68%, and 0% of the counties, compared to 20%, 72%, and 58% by 2004, and 77%, 96%, and 75% of the counties by 2017, respectively for A. americanum, D. variabilis, and I. scapularis. We document the loss of tick records due to unidentified, not cataloged tick collections, unidentified ticks in tick collections, unpublished data or manuscripts without specific county location, and tick-level information, to determine distribution and status. In light of the increase in tick-borne illnesses, updates in historical distributions and status maps help researchers and health officials to identify risk areas for a tick encounter and suggest targeted areas for public outreach and surveillance efforts for ticks and tick-borne diseases. There is a need for a systematic, national vector surveillance program to support research and public health responses to tick expansions and tick-borne diseases.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Rohit Sharma ◽  
Duncan W. Cozens ◽  
Philip M. Armstrong ◽  
Douglas E. Brackney

Abstract Background Powassan virus (POWV; genus Flavivirus) is the sole North American member of the tick-borne encephalitis sero-complex and an increasing public health threat in the USA. Maintained in nature by Ixodes spp. ticks, POWV has also been isolated from species of other hard tick genera, yet it is unclear if these species can serve as vectors. Dermacentor variabilis and Amblyomma americanum share geographic and ecologic overlap with Ixodes spp. ticks and POWV transmission foci, raising the possibility that POWV could become established in these tick species and leading to range expansion and increased human risk. Therefore, we assessed the competency of Ixodes scapularis, D. variabilis and A. americanum for POWV lineage II (POWV II). Methods Larvae from all three species were co-infested on POWV-infected Balb/c mice. The engorged larvae were allowed to molt to nymphs and screened for the presence of POWV II RNA by reverse transcription-qPCR. Eight infected nymphs from each species were allowed to individually feed on a naïve mouse. Mice were screened for the presence of POWV II RNA to determine infection status. Results The results demonstrated that larvae from all three tick species were able to efficiently acquire POWV II via feeding on viremic mice, maintain infection through molting and successively transmit POWV to naïve mice at the nymphal stage at comparable rates across all three species. Conclusions Our findings reveal that non-Ixodes tick species can serve as competent vectors for POWV and highlight the potential role of these species in the ecology and epidemiology of POWV. Future studies examining the possible implications of these findings on POWV epidemiology and the adaptability of POWV in these new vectors are warranted. Graphical abstract


Author(s):  
Ashley P G Dowling ◽  
Sean G Young ◽  
Kelly Loftin

Abstract Tick-borne diseases (TBD) in humans have dramatically increased over recent years and although the bulk of cases are attributable to Lyme Disease in the Northeastern US, TBDs like spotted fever rickettsiosis and ehrlichiosis heavily impact other parts of the country, namely the mid-south. Understanding tick and pathogen distributions and prevalence traditionally requires active surveillance, which quickly becomes logistically and financially unrealistic as the geographic area of focus increases. We report on a community science effort to survey ticks across Arkansas to obtain updated data on tick distributions and prevalence of human tick-borne disease-causing pathogens in the most commonly encountered ticks. During a 20-mo period, Arkansans submitted 9,002 ticks from 71 of the 75 counties in the state. Amblyomma americanum was the most common tick species received, accounting for 76% of total tick submissions. Nearly 6,000 samples were screened for spotted fever group Rickettsia (SFGR) and Ehrlichia, resulting in general prevalence rates of 37.4 and 5.1%, respectively. In addition, 145 ticks (2.5%) were infected with both SFGR and Ehrlichia. Arkansas Department of Health reported 2,281 spotted fever and 380 ehrlichiosis cases during the same period as our tick collections. Since known SFGR vectors Dermacentor variabilis and Amblyomma maculatum were not the most common ticks submitted, nor did they have the highest prevalence rates of SFGR, it appears that other tick species play the primary role in infecting humans with SFGR. Our investigation demonstrated the utility of community science to efficiently and economically survey ticks and identify vector-borne disease risk in Arkansas.


Sign in / Sign up

Export Citation Format

Share Document