scholarly journals A Practical Approach to Differentiate the Frontotemporal Tauopathy Subtypes

2020 ◽  
Vol 79 (10) ◽  
pp. 1122-1126
Author(s):  
Shelley L Forrest ◽  
Glenda M Halliday ◽  
Anastasia Sizemova ◽  
Marloes van Roijen ◽  
Ciara V McGinley ◽  
...  

Abstract This study proposes a practical approach, using the minimum number of brain regions and stains, to consolidate previously published neuropathological criteria into one operationalized schema to differentiate subtypes of frontotemporal lobar degeneration with tau-immunopositive inclusions (FTLD-tau). This approach uses the superior frontal and precentral cortices and hippocampus stained for phosphorylated-tau, p62 and modified Bielschowsky silver, and the midbrain stained only for modified Bielschowsky silver. Accuracy of interrater reliability was determined by 10 raters in 24 FTLD-tau cases (Pick disease = 4, corticobasal degeneration = 9, progressive supranuclear palsy = 5, globular glial tauopathy = 6) including 4 with a mutation in MAPT collected with consent by Sydney Brain Bank. All brain regions and stains assessed proved informative for accurate pathological subtyping, and many neuropathological features were identified as common across the FTLD-tau subtypes. By identifying subtype-specific neuropathological features in the sections selected, 10 independent observers assigned the cases to a FTLD-tau subtype with almost perfect agreement between raters, emphasizing the requirement for the assessment of subtype-specific features for the accurate subtyping of FTLD-tau. This study consolidates current consensus diagnostic criteria for classifying FTLD-tau subtypes with an efficient, simple and accurate approach that can be implemented in future clinicopathological studies.

Neurology ◽  
2019 ◽  
Vol 92 (21) ◽  
pp. e2472-e2482 ◽  
Author(s):  
Shelley L. Forrest ◽  
Daniel R. Crockford ◽  
Anastasia Sizemova ◽  
Heather McCann ◽  
Claire E. Shepherd ◽  
...  

ObjectiveTo investigate the prevalence of clinically relevant multiple system atrophy (MSA) and Lewy body disease (LBD) pathologies in a large frontotemporal lobar degeneration (FTLD) cohort to determine if concomitant pathologies underlie the heterogeneity of clinical features.MethodsAll prospectively followed FTLD-tau and FTLD-TDP cases held by the Sydney Brain Bank (n = 126) were screened for coexisting MSA and LBD (Braak ≥ stage IV) pathology. Relevant clinical (including family history) and genetic associations were determined.ResultsMSA pathology was not identified in this series. Of the FTLD cohort, 9 cases had coexisting LBD ≥ Braak stage IV and were associated with different FTLD subtypes including Pick disease (n = 2), corticobasal degeneration (n = 2), progressive supranuclear palsy (n = 2), and TDP type A (n = 3). All FTLD-TDP cases with coexisting LBD had mutations in progranulin (n = 2) or an abnormal repeat expansion in C9orf72 (n = 1). All FTLD-tau cases with coexisting LBD were sporadic. The H1H1 MAPT haplotype was found in all cases that could be genotyped (n = 6 of 9). Seven cases presented with a predominant dementia disorder, 3 of which developed parkinsonism. Two cases presented with a movement disorder and developed dementia in their disease course. The age at symptom onset (62 ± 11 years) and disease duration (8 ± 5 years) in FTLD cases with coexisting LBD did not differ from pure FTLD or pure LBD cases in the brain bank.ConclusionCoexisting LBD in FTLD comprises a small proportion of cases but has implications for clinical and neuropathologic diagnoses and the identification of biomarkers.


2013 ◽  
Vol 19 (3) ◽  
pp. 269-278 ◽  
Author(s):  
Christopher P. Ames ◽  
Justin S. Smith ◽  
Justin K. Scheer ◽  
Christopher I. Shaffrey ◽  
Virginie Lafage ◽  
...  

Object Cervical spine osteotomies are powerful techniques to correct rigid cervical spine deformity. Many variations exist, however, and there is no current standardized system with which to describe and classify cervical osteotomies. This complicates the ability to compare outcomes across procedures and studies. The authors' objective was to establish a universal nomenclature for cervical spine osteotomies to provide a common language among spine surgeons. Methods A proposed nomenclature with 7 anatomical grades of increasing extent of bone/soft tissue resection and destabilization was designed. The highest grade of resection is termed the major osteotomy, and an approach modifier is used to denote the surgical approach(es), including anterior (A), posterior (P), anterior-posterior (AP), posterior-anterior (PA), anterior-posterior-anterior (APA), and posterior-anterior-posterior (PAP). For cases in which multiple grades of osteotomies were performed, the highest grade is termed the major osteotomy, and lower-grade osteotomies are termed minor osteotomies. The nomenclature was evaluated by 11 reviewers through 25 different radiographic clinical cases. The review was performed twice, separated by a minimum 1-week interval. Reliability was assessed using Fleiss kappa coefficients. Results The average intrarater reliability was classified as “almost perfect agreement” for the major osteotomy (0.89 [range 0.60–1.00]) and approach modifier (0.99 [0.95–1.00]); it was classified as “moderate agreement” for the minor osteotomy (0.73 [range 0.41–1.00]). The average interrater reliability for the 2 readings was the following: major osteotomy, 0.87 (“almost perfect agreement”); approach modifier, 0.99 (“almost perfect agreement”); and minor osteotomy, 0.55 (“moderate agreement”). Analysis of only major osteotomy plus approach modifier yielded a classification that was “almost perfect” with an average intrarater reliability of 0.90 (0.63–1.00) and an interrater reliability of 0.88 and 0.86 for the two reviews. Conclusions The proposed cervical spine osteotomy nomenclature provides the surgeon with a simple, standard description of the various cervical osteotomies. The reliability analysis demonstrated that this system is consistent and directly applicable. Future work will evaluate the relationship between this system and health-related quality of life metrics.


2021 ◽  
Author(s):  
Rahat Hasan ◽  
Jack Humphrey ◽  
Conceicao Bettencourt ◽  
Tammaryn Lashley ◽  
Pietro Fratta ◽  
...  

Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared post-mortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.


2013 ◽  
Vol 11 (5) ◽  
pp. 547-551 ◽  
Author(s):  
Fabio A. Frisoli ◽  
Shih-Shan Lang ◽  
Arastoo Vossough ◽  
Anne Marie Cahill ◽  
Gregory G. Heuer ◽  
...  

Object Cerebral arteriovenous malformations (AVMs) have a higher postresection recurrence rate in children than in adults. The authors' previous study demonstrated that a diffuse AVM (low compactness score) predicts postresection recurrence. The aims of this study were to evaluate the intra- and interrater reliability of the AVM compactness score. Methods Angiograms of 24 patients assigned a preoperative compactness score (scale of 1–3; 1 = most diffuse, 3 = most compact) in the authors' previous study were rerated by the same pediatric neuroradiologist 9 months later. A pediatric neurosurgeon, pediatric neuroradiology fellow, and interventional radiologist blinded to each other's ratings, the original ratings, and AVM recurrence also rated each AVM's compactness. Intrarater and interrater reliability were calculated using the κ statistic. Results Of the 24 AVMs, scores by the original neuroradiologist were 1 in 6 patients, 2 in 16 patients, and 3 in 2 patients. Intrarater reliability was 1.0. The κ statistic among the 4 raters was 0.69 (95% CI 0.44–0.89), which indicates substantial reliability. The interrater reliability between the neuroradiologist and neuroradiology fellow was moderate (κ = 0.59 [95%CI 0.20–0.89]) and was substantial between the neuroradiologist and neurosurgeon (κ = 0.74 [95% CI 0.41–1.0]). The neuroradiologist and interventional radiologist had perfect agreement (κ = 1.0). Conclusions Intrarater and interrater reliability of the AVM compactness score were excellent and substantial, respectively. These results demonstrate that the AVM compactness score is reproducible. However, the neuroradiologist and interventional radiologist had perfect agreement, which indicates that the compactness score is applied most accurately by those with extensive angiography experience.


Author(s):  
Johannes Attems ◽  
Kurt A. Jellinger

This chapter describes the main neuropathological features of the most common age-associated neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and dementia with Lewy bodies, as well as other less frequent ones such as multiple system atrophy, Pick’s disease, corticobasal degeneration, progressive supranuclear palsy, argyrophilic grain disease, neurofibrillary tangle-dominant dementia, frontotemporal lobar degeneration with TDP-43 pathology, and Huntington’s disease. Likewise, cerebral amyloid angiopathy, hippocampal sclerosis, vascular dementia, and prion diseases are described. A main aim of this chapter is to assist the reader in interpreting neuropathological reports; hence criteria for the neuropathological classifications of the major diseases are provided. One section covers general considerations on neurodegeneration, and basic pathophysiological mechanisms of tau, amyloid-β‎, α‎-synuclein, TDP-43, and prions are briefly described in the sections on the respective diseases. Finally, one section is dedicated to cerebral multimorbidity, and a view on currently emerging neuropathological methods is given.


Author(s):  
Masataka Nakamura ◽  
Satoshi Kaneko ◽  
Dennis W Dickson ◽  
Hirofumi Kusaka

Abstract BRCA1 plays an important roles in several biological events during the DNA damage response (DDR). Recently, some reports have indicated that BRCA1 dysfunction is involved in the pathogenesis of Alzheimer disease (AD). Furthermore, it has also been reported that BRCA1 accumulates within neurofibrillary tangles (NFTs) in the AD brain. In this study, we examined the immunohistochemical distribution of BRCA1 and another DDR protein, p53-Binding Protein 1 (53BP1), in AD, Pick disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration, and frontotemporal dementia with parkinsonism linked to chromosome 17. In control subjects, neither BRCA1 nor phosphorylated BRCA1 (pBRCA1; Ser1524) immunoreactivity was observed in neurons or glial cells; and that for pBRCA1 (Ser1423) and 53BP1 were slightly detected in neuronal nuclei. The immunoreactivity for both BRCA1 and pBRCA1 (Ser1423) was localized within phosphorylated tau inclusions in all tauopathies, whereas that for pBRCA1 (Ser1524) was mainly associated with Pick bodies in PiD and to a lesser extent with NFTs in AD. On the other hand, 53BP1-immunoreactive deposits tended to be increased in the nucleus of neurons in AD and PSP compared with those in control cases. Our results suggest that DDR dysfunction due to cytoplasmic sequestration of BRCA1 could be involved in the pathogenesis of tauopathies.


Author(s):  
Manon Bouchard ◽  
Oksana Suchowersky

Tauopathies are a group of disorders that have in common abnormal accumulation of tau protein in the brain. Although the different tauopathies have long been considered to be separate diseases, it is now clear that progressive supranuclear palsy, corticobasal degeneration and some forms of tau-positive frontotemporal lobar degeneration share clinical, pathological and genetic features. The important overlap between these disorders suggest they may represent different phenotypes of a single disease process, the clinical result depending on the topography of pathological lesions as well as other unknown factors.


2012 ◽  
Vol 11 (4) ◽  
pp. 2533-2543 ◽  
Author(s):  
Daniel Martins-de-Souza ◽  
Paul C. Guest ◽  
David M. Mann ◽  
Sigrun Roeber ◽  
Hassan Rahmoune ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document