scholarly journals Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau

2009 ◽  
Vol 2 (1) ◽  
pp. 43-43
Author(s):  
M. Shen ◽  
Y. Tang ◽  
J. Klein ◽  
P. Zhang ◽  
S. Gu ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Zhang ◽  
Jian Sun ◽  
Junnan Xiong

Evapotranspiration (ET) is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p<0.0001), precipitation (R > 0.89, p < 0.0001), and NDVI (R > 0.75, p < 0.0001), but a negative correlation between ET and radiation (R = 0.76, p < 0.0001) was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.


2019 ◽  
Vol 20 (10) ◽  
pp. 2043-2055 ◽  
Author(s):  
Qingyun Bian ◽  
Zhongfeng Xu ◽  
Long Zhao ◽  
Yong-Fei Zhang ◽  
Hui Zheng ◽  
...  

Abstract Snow cover affects the thermal conditions of the Tibetan Plateau through snow–albedo feedback and snowmelt, which, in turn, modulates the Asian summer monsoon climate. An accurate estimation of the snow condition on the Tibetan Plateau is therefore of great importance in both seasonal forecasts and climate studies. Estimation of snow water equivalent (SWE) over the Tibetan Plateau is challenging due to the high altitude, complex terrain, and insufficient in situ observations. Multiple SWE products derived from satellite estimates, reanalyses, regional climate model simulations, and land data assimilations are intercompared in terms of daily, seasonal, and annual variations and are then evaluated against in situ SWE observations. The results show a relatively consistent seasonal to interannual variability of the SWE estimates among the products. The discrepancies in magnitude are large, however, especially in winter and spring. Evaluation against in situ SWE observations indicates that none of these products is capable of accurately characterizing both the spatial pattern and temporal variations.


2019 ◽  
Vol 30 (6) ◽  
pp. 1253-1265 ◽  
Author(s):  
Deliang Liu ◽  
Rendeng Shi ◽  
Lin Ding ◽  
Shao-Yong Jiang

2018 ◽  
Vol 22 (1) ◽  
pp. 351-371 ◽  
Author(s):  
Wenbin Liu ◽  
Fubao Sun ◽  
Yanzhong Li ◽  
Guoqing Zhang ◽  
Yan-Fang Sang ◽  
...  

Abstract. The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June–October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.


Sign in / Sign up

Export Citation Format

Share Document