scholarly journals Winter soil respiration during soil-freezing process in a boreal forest in Northeast China

2013 ◽  
Vol 6 (5) ◽  
pp. 349-357 ◽  
Author(s):  
E. Du ◽  
Z. Zhou ◽  
P. Li ◽  
L. Jiang ◽  
X. Hu ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Tong Li ◽  
Haicheng Zhang ◽  
Xiaoyuan Wang ◽  
Shulan Cheng ◽  
Huajun Fang ◽  
...  

2012 ◽  
Vol 9 (4) ◽  
pp. 1423-1440 ◽  
Author(s):  
C. S. Sturtevant ◽  
W. C. Oechel ◽  
D. Zona ◽  
Y. Kim ◽  
C. E. Emerson

Abstract. Accurate estimates of annual budgets of methane (CH4) efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment). We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission), and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.


2017 ◽  
Vol 13 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Guo-qing Zhou ◽  
Yang Zhou ◽  
Kun Hu ◽  
Yi-jiang Wang ◽  
Xiang-yu Shang

PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204053
Author(s):  
Ming Wang ◽  
Xiujun Li ◽  
Shengzhong Wang ◽  
Guodong Wang ◽  
Jitao Zhang

Sign in / Sign up

Export Citation Format

Share Document