Nitric oxide production and signalling in algae

Author(s):  
Jeremy Astier ◽  
Jordan Rossi ◽  
Pauline Chatelain ◽  
Agnès Klinguer ◽  
Angélique Besson-Bard ◽  
...  

Abstract Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO–cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.

2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


Parasitology ◽  
1999 ◽  
Vol 118 (2) ◽  
pp. 139-143 ◽  
Author(s):  
N. FAVRE ◽  
B. RYFFEL ◽  
W. RUDIN

Nitric oxide (NO) production has been suggested to play a role as effector molecule in the control of the malarial infections. However, the roles of this molecule are debated. To assess whether blood-stage parasite killing is NO dependent, we investigated the course of blood-stage Plasmodium chabaudi chabaudi (Pcc) infections in inducible nitric oxide synthase (iNOS)-deficient mice. Parasitaemia, haematological alterations, and survival were not affected by the lack of iNOS. To exclude a role of NO produced by other NOS, controls included NO suppression by oral administration of aminoguanidine (AG), a NOS inhibitor. As in iNOS-deficient mice, no difference in the parasitaemia course, survival and haematological values was observed after AG treatment. Our results indicate that NO production is not required for protection against malaria in our murine experimental model. However, C57BL/6 mice treated with AG lost their resistance to Pcc infections, suggesting that the requirement for NO production for parasite killing in murine blood-stage malaria might be strain dependent.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


2001 ◽  
Vol 91 (3) ◽  
pp. 1121-1130 ◽  
Author(s):  
Yasushi Yamamoto ◽  
Hitoshi Nakano ◽  
Hiroshi Ide ◽  
Toshiyuki Ogasa ◽  
Toru Takahashi ◽  
...  

The effects of hypercapnia (CO2) confined to either the alveolar space or the intravascular perfusate on exhaled nitric oxide (NO), perfusate NO metabolites (NOx), and pulmonary arterial pressure (Ppa) were examined during normoxia and progressive 20-min hypoxia in isolated blood- and buffer-perfused rabbit lungs. In blood-perfused lungs, when alveolar CO2concentration was increased from 0 to 12%, exhaled NO decreased, whereas Ppa increased. Increments of intravascular CO2levels increased Ppa without changes in exhaled NO. In buffer-perfused lungs, alveolar CO2 increased Ppa with reductions in both exhaled NO from 93.8 to 61.7 (SE) nl/min ( P < 0.01) and perfusate NOx from 4.8 to 1.8 nmol/min ( P < 0.01). In contrast, intravascular CO2 did not affect either exhaled NO or Ppa despite a tendency for perfusate NOx to decline. Progressive hypoxia elevated Ppa by 28% from baseline with a reduction in exhaled NO during normocapnia. Alveolar hypercapnia enhanced hypoxic Ppa response up to 50% with a further decline in exhaled NO. Hypercapnia did not alter the apparent K m for O2, whereas it significantly decreased the V max from 66.7 to 55.6 nl/min. These results suggest that alveolar CO2 inhibits epithelial NO synthase activity noncompetitively and that the suppressed NO production by hypercapnia augments hypoxic pulmonary vasoconstriction, resulting in improved ventilation-perfusion matching.


1999 ◽  
Vol 277 (2) ◽  
pp. H732-H739 ◽  
Author(s):  
M. Audrey Rudd ◽  
Maria Trolliet ◽  
Susan Hope ◽  
Anne Ward Scribner ◽  
Geraldine Daumerie ◽  
...  

Although recent evidence suggests that reduced nitric oxide (NO) production may be involved in salt-induced hypertension, the specific NO synthase (NOS) responsible for the conveyance of salt sensitivity remains unknown. To determine the role of inducible NOS (NOS II) in salt-induced hypertension, we treated Dahl salt-resistant (DR) rats with the selective NOS II inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) for 12 days. Tail-cuff systolic blood pressures rose 29 ± 6 and 42 ± 8 mmHg in DR rats given 150 and 300 nmol AMT/h, respectively ( P < 0.01, 2-way ANOVA) after 7 days of 8% NaCl diet. We observed similar results with two other potent selective NOS II inhibitors, S-ethylisourea (EIT) and N-[3-(aminomethyl)benzyl]acetamidine hydrochloride (1400W). Additionally, AMT effects were independent of alterations in endothelial function as assessed by diameter change of mesenteric arterioles in response to methacholine using videomicroscopy. We, therefore, conclude from these data that NOS II is important in salt-induced hypertension.


2005 ◽  
Vol 288 (1) ◽  
pp. H43-H47 ◽  
Author(s):  
Hong Ji ◽  
Carlo Pesce ◽  
Wei Zheng ◽  
James Kim ◽  
Yinghua Zhang ◽  
...  

To investigate the faster rate of renal disease progression in men compared with women, we addressed the following questions in the renal wrap (RW) model of hypertension: 1) Do sex differences exist in RW-induced renal injury, which are independent of sex differences in blood pressure? 2) Do sex differences in nitric oxide (NO) production exist in RW hypertension? Male (M) and female (F) rats underwent sham-operated (M-Sham, n = 7; F-Sham, n = 10) or RW (M-RW, n = 13; F-RW, n = 14) surgery for 9 wk. Markers of renal injury, including the glomerulosclerosis index (F-RW, 0.70 ± 0.1 vs. M-RW, 2.2 ± 0.6; P < 0.05), mean glomerular volume (F-RW, 1.05 ± 0.050 × 106 vs. M-RW, 1.78 ± 0.15 × 106 μm3; P < 0.001), and proteinuria (F-RW, 68.7 ± 15 vs. M-RW, 124 ± 7.7 mg/day; P < 0.001) were greater in RW males compared with RW females. Endothelial NO synthase protein expression was elevated in the renal cortex (3.2-fold) and medulla (2.2-fold) 9 wk after RW in males, whereas no differences were observed in females. Neuronal NO synthase protein expression was unchanged in the renal cortex in males and in both the renal cortex and medulla in females, whereas in the male medulla, neuronal NOS was decreased by 57%. These data suggest the degree of renal injury is greater in male compared with female rats in RW hypertension despite similar degrees of hypertension and renal function and may involve sex differences in renal NO metabolism.


2004 ◽  
Vol 287 (5) ◽  
pp. G993-G997 ◽  
Author(s):  
Tanja Sobko ◽  
Claudia Reinders ◽  
Elisabeth Norin ◽  
Tore Midtvedt ◽  
Lars E. Gustafsson ◽  
...  

Nitric oxide (NO) is a central mediator of various physiological events in the gastrointestinal tract. The influence of the intestinal microflora for NO production in the gut is unknown. Bacteria could contribute to this production either by stimulating the mucosa to produce NO, or they could generate NO themselves. Using germ-free and conventional rats, we measured gaseous NO directly in the gastrointestinal tract and from the luminal contents using a chemiluminescence technique. Mucosal NO production was studied by using an NO synthase (NOS) inhibitor, and to evaluate microbial contribution to the NO generation, nitrate was given to the animals. In conventional rats, luminal NO differed profoundly along the gastrointestinal tract with the greatest concentrations in the stomach [>4,000 parts per billion (ppb)] and cecum (≈200 ppb) and lower concentrations in the small intestine and colon (≤20 ppb). Cecal NO correlated with the levels in incubated luminal contents. NOS inhibition lowered NO levels in the colon, without affecting NO in the stomach and in the cecum. Gastric NO increased greatly after a nitrate load, proving it to be a substrate for NO generation. In germ-free rats, NO was low (≤30 ppb) throughout the gastrointestinal tract and absent in the incubated luminal contents. NO also remained low after a nitrate load. Our results demonstrate a pivotal role of the intestinal microflora in gastrointestinal NO generation. Distinctly compartmentalized qualitative and quantitative NO levels in conventional and germ-free rats reflect complex host microbial cross talks, possibly making NO a regulator of the intestinal eco system.


Sign in / Sign up

Export Citation Format

Share Document