scholarly journals Effect of Sodium Lauryl Sulfate (SLS) on Primary Human Gingival Fibroblasts in an In Vitro Wound Healing Model

2019 ◽  
Vol 184 (Supplement_1) ◽  
pp. 97-101 ◽  
Author(s):  
Augustine H Chuang ◽  
Justin Bordlemay ◽  
Jeremy L Goodin ◽  
James C McPherson

Abstract Objectives Sodium lauryl sulfate (SLS) is a surfactant used to decrease the surface tension of water. Most commercially available dentifrices contain 0.5–2.0% SLS. This study investigated the potential effect of SLS on oral wound healing using primary human gingival fibroblasts (HGFs). Methods HGFs cells were grown in12-well culture plates in DMEM medium. A 3 mm wound was created on confluent HGFs. The cells were challenged with 0 (the control group), 0.01, 0.02, 0.03, 0.04, or 0.05% SLS-containing media once daily for 2 minutes. The cells were stained on day 0, 2, 4, 6 and 8. The percent of wound fill area was measured. Results On day 2, 4, 6, and 8, the wound fill of the control group (0% SLS) was 15, 35, 67 and 98%, respectively; at 0.01% SLS, it was 10, 20, 65 and 84%; at 0.02%, it was 7, 10, 15 and 25%; at 0.03% SLS, it was only 5% and 8% on day 2 and 4. Conclusion Our results showed a dose- and time-dependent inhibition on HGFs wound fill by SLS; however, future in vivo studies are needed to validate if our in vitro findings using SLS-free dentifrices to avoid the potential delay of wound healing.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10279
Author(s):  
Kaining Liu ◽  
Bing Han ◽  
Jianxia Hou ◽  
Jianyun Zhang ◽  
Jing Su ◽  
...  

Background Vitamin D 1α-hydroxylase CYP27B1 is the key factor in the vitamin D pathway. Previously, we analyzed the expression of CYP27B1 in human gingival fibroblasts in vitro. In the present study, we analyzed the gingival expression of CYP27B1 in vivo. Methods Forty-two patients with periodontitis Stage IV Grade C and 33 controls were recruited. All patients with periodontitis had unsalvageable teeth and part of the wall of the periodontal pocket was resected and obtained after tooth extraction. All controls needed crown-lengthening surgery, and samples of gingiva resected during surgery were also harvested. All the individuals’ gingivae were used for immunohistochemistry and immunofluorescence. In addition, gingivae from seventeen subjects of the diseased group and twelve subjects of the control group were analyzed by real-time PCR. Results Expression of CYP27B1 was detected both in gingival epithelia and in gingival connective tissues, and the expression in connective tissues colocalized with vimentin, indicating that CYP27B1 protein is expressed in gingival fibroblasts. The expression of CYP27B1 mRNA in gingival connective tissues and the CYP27B1 staining scores in gingival fibroblasts in the diseased group were significantly higher than those in the control group. Conclusions Expression of CYP27B1 in human gingival tissues was detected, not only in the fibroblasts of gingival connective tissues, but also in the gingival epithelial cells, and might be positively correlated with periodontal inflammation.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 970 ◽  
Author(s):  
Witold Sujka ◽  
Zbigniew Draczynski ◽  
Beata Kolesinska ◽  
Ilona Latanska ◽  
Zenon Jastrzebski ◽  
...  

In spite of intensively conducted research allowing for the development of more and more advanced wound dressing materials, there is still a need for dressings that stimulate not only reparative and regenerative processes, but also have a positive effect on infected and/or difficult-to-heal wounds. Porous dressing materials based on butyric-acetic chitin co-polyester containing 90% of butyryl and 10% of acetyl groups (BAC 90/10) can also be included in the group mentioned above. Two types of dressings were obtained by the salt leaching method, i.e. a porous sponge Medisorb R and Medisorb Ag with an antibacterial additive. The aim of the study was to evaluate biological effects of porous Medisorb R and Medisorb Ag dressings under in vitro and in vivo conditions. In an in vitro biodegradation test, no mass loss of Medisorb R dressing was observed within 14 days of incubation in physiological fluids at 37 °C. However, on the basis of the FTIR (Fourier Transform Infrared Spectroscopy) tests, surface degradation of Medisorb R dressing was observed. Additionally, the antibacterial activity of the porous Medisorb Ag dressing containing microsilver as an antibacterial additive was confirmed. The in vivo studies included inflammatory activity, skin irritation and sensitisation tests, as well an assessment of local effect after contact with subcutaneous tissue up to 6 months and skin wounds up to 21 days. In the in vivo tests, the dressings exhibited neither effects of skin irritation nor sensitisation. Under macroscopic examination, in full thickness defects of subcutaneous tissue and skin, the dressings caused wound healing with no inflammation, undergoing the most gradual biodegradation between weeks 4 and 8, and the observed differences were statistically significant. In the histological assessment, a weakened, limited inflammatory process associated with degradation of the material has been observed. The process of skin wound healing under Medisorb R dressing in the early period was accelerated compared to that observed in the control group with a gauze dressing.


Author(s):  
N. VISHAL GUPTA ◽  
S. SHANMUGANATHAN ◽  
SANDEEP KANNA ◽  
K. TRIDEVA SASTRI

Objective: To develop and formulate doxycycline hydrochloride hydrogels employing various polymers for wound healing application. Methods: A thermo-reversible gel can transmute from a sol-gel in replication to environmental temperature vicissitudes made up of gallic acid (GA) and tamarind seed polysaccharide (TSP). An antimicrobial agent (doxycycline hydrochloride) integrated to provide the benefit and efficiently safeguard the wound from infection. A low temperature causes TSP to aggregate intermolecularly with GA to create a gel network. GA–TSP gel heat stability increased with increased concentration of GA. Prepared gel formulations were optimized by 23 factorial designs further evaluated for stability and compatibility, appearance, gelation temperature, gravitational flow simulation, in vitro release, in vivo excision wound model in rats. Results: A strong viscoelastic gel was formed at body temperature in the GA–TSP mixture containing 0.6% (w/v) GA. The prepared formulation exhibited absolute stability and compatibility. The formulations indicated a range of 23±1.47 to 50±1.40 °C. The viscosity values were in the range 6628 to 19146 cps. The optimized gel formulation (DT8) was prepared to analyze the checkpoints and further evaluated for gelation temperature ( °C), viscosity (cps), gelation time (s), and in vitro release of drugs (percent cumulative release of drugs) up to 12 h reflecting R1=36.5±0.61 °C, R2=12887±11 cps, R3=16.2±1.38 min and R4=94.65±0.59 percent. Formulation DT8 showed significant wound healing property and it is comparable to the control group. Formulation DT9 treated group showed faster epithelialization and greater rates of wound contraction in rats. Conclusion: The formulations comprising of TSP with antimicrobial agents demonstrated to be efficient in wound healing. Out of all formulations, DT8 showed better wound healing ability, which is evident from in vivo studies.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


Author(s):  
Jens Weusmann ◽  
James Deschner ◽  
Jean-Claude Imber ◽  
Anna Damanaki ◽  
Natalia D. P. Leguizamón ◽  
...  

Abstract Objectives Air-polishing has been used in the treatment of periodontitis and gingivitis for years. The introduction of low-abrasive powders has enabled the use of air-polishing devices for subgingival therapy. Within the last decade, a wide range of different low-abrasive powders for subgingival use has been established. In this study, the effects of a glycine powder and a trehalose powder on human gingival fibroblasts (HGF) were investigated. Methods HGF were derived from three systemically and periodontally healthy donors. After 24 h and 48 h of incubation time, mRNA levels, and after 48 h, protein levels of TNFα, IL-8, CCL2, and VEGF were determined. In addition, NF-κB p65 nuclear translocation and in vitro wound healing were assessed. Statistical analysis was performed by ANOVA and post hoc Dunnett’s and Tukey’s tests (p < 0.05). Results Glycine powder significantly increased the expression of proinflammatory genes and showed exploitation of the NF-κB pathway, albeit trehalose powder hardly interfered with cell function and did not trigger the NF-κB pathway. In contrast to trehalose, glycine showed a significant inhibitory effect on the in vitro wound healing rate. Conclusion Subgingivally applicable powders for air-polishing devices can regulate cell viability and proliferation as well as cytokine expression. Our in vitro study suggests that the above powders may influence HGF via direct cell effects. Trehalose appears to be relatively inert compared to glycine powder.


2021 ◽  
Vol 95 ◽  
Author(s):  
E.S. El-Wakil ◽  
H.F. Abdelmaksoud ◽  
T.S. AbouShousha ◽  
M.M.I. Ghallab

Abstract Our work aimed to evaluate the possible effect of Annona muricata (Graviola) leaf extract on Trichinella spiralis in in vitro and in vivo studies. Trichinella spiralis worms were isolated from infected mice and transferred to three culture media – group I (with no drugs), group II (contained Graviola) and group III (contained albendazole) – then they were examined using the electron microscope. In the in vivo study, mice were divided into five groups: GI (infected untreated), GII (prophylactically treated with Graviola for seven days before infection), GIII (infected and treated with Graviola), GIV (infected and treated with albendazole) and GV (infected and treated with a combination of Graviola plus albendazole in half doses). Drug effects were assessed by adults and larvae load beside the histopathological small intestinal and muscular changes. A significant reduction of adult and larval counts occurred in treated groups in comparison to the control group. Histopathologically, marked improvement in the small intestinal and muscular changes was observed in treated groups. Also, massive destruction of the cultured adults’ cuticle was detected in both drugs. This study revealed that Graviola leaves have potential activity against trichinellosis, especially in combination with albendazole, and could serve as an adjuvant to anti-trichinellosis drug therapy.


2021 ◽  
Vol 12 (6) ◽  
pp. 7621-7632

Diabetes Mellitus is the most prevalent metabolic disorder that is increasing at an alarming rate worldwide. The unregulated glucose level leads to various types of health disorders, and one of the major diabetic complications is delayed wound healing. Due to the more side effects of synthetic drugs, there is a need to explore plants and their phytochemicals for medicinal purposes. It was found that Quercetin, a flavonoid, increases the rate of diabetic wound healing by enhancing the expression of SIRT1. This demands more insight towards Quercetin and its similar compounds, as it is hypothesized that similar compounds may have similar biological properties. Thus similarity searching was done to identify the most similar compounds of Quercetin, and then the molecular docking of the screened compounds was performed using AutoDock Vina. The unique ligands were docked into the active site of SIRT1 protein (PDB ID: 4ZZJ). The binding free energy of the interacting ligand with the protein was estimated. Six compounds were identified which possess the maximum structural similarity with Quercetin, and upon docking, it was found that gossypetin and herbacetin have similar binding modes and binding energy as that of Quercetin (-7.5 kcal/mol). Therefore, the hypothesis has been validated by in silico analysis. Our study identified two phytochemicals, Gossypetin, and Herbacetin which can prove beneficial for improving diabetic wound healing but needs to be validated further by in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document