scholarly journals Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance

2020 ◽  
Vol 58 (7) ◽  
pp. 896-905 ◽  
Author(s):  
Débora de Souza Collares Maia Castelo-Branco ◽  
Manoel de Araújo Neto Paiva ◽  
Carlos Eduardo Cordeiro Teixeira ◽  
Érica Pacheco Caetano ◽  
Gláucia Morgana de Melo Guedes ◽  
...  

Abstract This study initially aimed at investigating the occurrence of azole resistance among Candida spp. from animals and analyzing the involvement of efflux pumps in the resistance phenomenon. Then, the dynamics of antifungal resistance was assessed, by comparing the antifungal epidemiological cutoff values (ECVs) against C. albicans and C. tropicalis from humans and animals. Fifty azole-resistant isolates (24 C. albicans, 24 C. tropicalis; 2 C. parapsilosis sensu lato) were submitted to the efflux pump inhibition assay with promethazine and significant MIC reductions were observed for fluconazole (2 to 250-fold) and itraconazole (16 to 4000-fold). Then, the antifungal ECVs against C. albicans and C. tropicalis from human and animal isolates were compared. Fluconazole, itraconazole and voriconazole ECVs against human isolates were lower than those against animal isolates. Based on the antifungal ECVs against human isolates, only 33.73%, 50.39% and 63.53% of C. albicans and 52.23%, 61.85% and 55.17% of C. tropicalis from animals were classified as wild-type for fluconazole, itraconazole and voriconazole, respectively. Therefore, efflux-mediated mechanisms are involved in azole resistance among Candida spp. from animals and this phenomenon seems to emerge in animal-associated niches, pointing to the existence of environmental drivers of resistance and highlighting the importance of the One Health approach to control it.

2007 ◽  
Vol 51 (11) ◽  
pp. 3988-4000 ◽  
Author(s):  
Arnold Louie ◽  
David L. Brown ◽  
Weiguo Liu ◽  
Robert W. Kulawy ◽  
Mark R. Deziel ◽  
...  

ABSTRACT The prevalence of fluoroquinolone-resistant Streptococcus pneumoniae is slowly rising as a consequence of the increased use of fluoroquinolone antibiotics to treat community-acquired pneumonia. We tested the hypothesis that increased efflux pump (EP) expression by S. pneumoniae may facilitate the emergence of fluoroquinolone resistance. By using an in vitro pharmacodynamic infection system, a wild-type S. pneumoniae strain (Spn-058) and an isogenic strain with EP overexpression (Spn-RC2) were treated for 10 days with ciprofloxacin or levofloxacin in the presence or absence of the EP inhibitor reserpine to evaluate the effect of EP inhibition on the emergence of resistance. Cultures of Spn-058 and Spn-RC2 were exposed to concentration-time profiles simulating those in humans treated with a regimen of ciprofloxacin at 750 mg orally once every 12 h and with regimens of levofloxacin at 500 and 750 mg orally once daily (QD; with or without continuous infusions of 20 μg of reserpine/ml). The MICs of ciprofloxacin and levofloxacin for Spn-058 were both 1 μg/ml when susceptibility testing was conducted with each antibiotic alone and with each antibiotic in the presence of reserpine. For Spn-RC2, the MIC of levofloxacin alone and with reserpine was also 1 μg/ml; the MICs of ciprofloxacin were 2 and 1 μg/ml, respectively, when determined with ciprofloxacin alone and in combination with reserpine. Reserpine, alone, had no effect on the growth of Spn-058 and Spn-RC2. For Spn-058, simulated regimens of ciprofloxacin at 750 mg every 12 h or levofloxacin at 500 mg QD were associated with the emergence of fluoroquinolone resistance. However, the use of ciprofloxacin at 750 mg every 12 h and levofloxacin at 500 mg QD in combination with reserpine rapidly killed Spn-058 and prevented the emergence of resistance. For Spn-RC2, levofloxacin at 500 mg QD was associated with the emergence of resistance, but again, the resistance was prevented when this levofloxacin regimen was combined with reserpine. Ciprofloxacin at 750 mg every 12 h also rapidly selected for ciprofloxacin-resistant mutants of Spn-RC2. However, the addition of reserpine to ciprofloxacin therapy only delayed the emergence of resistance. Levofloxacin at 750 mg QD, with and without reserpine, effectively eradicated Spn-058 and Spn-RC2 without selecting for fluoroquinolone resistance. Ethidium bromide uptake and efflux studies demonstrated that, at the baseline, Spn-RC2 had greater EP expression than Spn-058. These studies also showed that ciprofloxacin was a better inducer of EP expression than levofloxacin in both Spn-058 and Spn-RC2. However, in these isolates, the increase in EP expression by short-term exposure to ciprofloxacin and levofloxacin was transient. Mutants of Spn-058 and Spn-RC2 that emerged under suboptimal antibiotic regimens had a stable increase in EP expression. Levofloxacin at 500 mg QD in combination with reserpine, an EP inhibitor, or at 750 mg QD alone killed wild-type S. pneumoniae and strains that overexpressed reserpine-inhibitable EPs and was highly effective in preventing the emergence of fluoroquinolone resistance in S. pneumoniae during therapy. Ciprofloxacin at 750 mg every 12 h, as monotherapy, was ineffective for the treatment of Spn-058 and Spn-RC2. Ciprofloxacin in combination with reserpine prevented the emergence of resistance in Spn-058 but not in Spn-RC2, the EP-overexpressing strain.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


2020 ◽  
Vol 8 (12) ◽  
pp. 2037
Author(s):  
Aryse Martins Melo ◽  
David A. Stevens ◽  
Lisa A. Tell ◽  
Cristina Veríssimo ◽  
Raquel Sabino ◽  
...  

The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.


2020 ◽  
Vol 34 (4) ◽  
pp. 202-214 ◽  
Author(s):  
Paul E. Verweij ◽  
John A. Lucas ◽  
Maiken C. Arendrup ◽  
Paul Bowyer ◽  
Arjen J.F. Brinkmann ◽  
...  

2016 ◽  
Vol 47 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Raimunda S.N. Brilhante ◽  
Manoel A.N. Paiva ◽  
Célia M.S. Sampaio ◽  
Débora S.C.M. Castelo-Branco ◽  
Carlos E.C. Teixeira ◽  
...  

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Sara B. Salazar ◽  
Noémi Valez ◽  
Danielle Sotti-Novais ◽  
Rita Simões ◽  
José António Souza ◽  
...  

The relevance of C. glabrata as a human pathogen is linked with its poor susceptibility to azoles as well as its extreme genomic plasticity that allows the rapid acquisition of resistance. Extensive characterization of azole-resistant C. glabrata strains unveiled the central role of the transcriptional regulator CgPdr1 in the resistance phenotype, with many strains encoding hyperactive (or gain-of-function; GOF) CgPdr1 alleles. Large scale profiling of a collection of clinical C. glabrata isolates recovered in hospitals of the Lisbon area, in Portugal, led to the identification of 11 strains exhibiting resistance to fluconazole and voriconazole, while 2 were only resistant to fluconazole. Among these strains, 10 were found to encode alleles of the CgPDR1 gene harbouring multiple non-synonymous SNPs that were not found in the alleles encoded by susceptible strains, including K274Q, I392M and I803T not previously described as GOF mutations. The isolates encoding these alleles were found to over-express several CgPdr1 target genes including the azole efflux pump CgCDR1 sustaining the idea that these represent new gain-of-function CgPdr1 alleles. Only one of the identified azole-resistant strains was found to encode a CgPDR1 allele fully identical to the one encoded by susceptible strains. To better understand the resistance phenotype of this strain, its transcriptome was compared with the one of a susceptible strain and of strains encoding CgPdr1 GOF alleles. The results of this comparative transcriptomic analysis will be discussed shedding light into the different azole-resistance mechanisms evolved by C. glabrata, including those independent of CgPdr1 GOF strains.


2020 ◽  
Vol 6 (4) ◽  
pp. 215
Author(s):  
Laura Nunes Silva ◽  
Lívia de Souza Ramos ◽  
Simone Santiago Carvalho Oliveira ◽  
Lucas Barros Magalhães ◽  
Eamim Daidrê Squizani ◽  
...  

The Candida haemulonii complex (C. duobushaemulonii, C. haemulonii, and C. haemulonii var. vulnera) is composed of emerging, opportunistic human fungal pathogens able to cause invasive infections with high rates of clinical treatment failure. This fungal complex typically demonstrates resistance to first-line antifungals, including fluconazole. In the present work, we have investigated the azole resistance mechanisms expressed in Brazilian clinical isolates forming the C. haemulonii complex. Initially, 12 isolates were subjected to an antifungal susceptibility test, and azole cross-resistance was detected in almost all isolates (91.7%). In order to understand the azole resistance mechanistic basis, the efflux pump activity was assessed by rhodamine-6G. The C. haemulonii complex exhibited a significantly higher rhodamine-6G efflux than the other non-albicans Candida species tested (C. tropicalis, C. krusei, and C. lusitaneae). Notably, the efflux pump inhibitors (Phe-Arg and FK506) reversed the fluconazole and voricolazole resistance phenotypes in the C. haemulonii species complex. Expression analysis indicated that the efflux pump (ChCDR1, ChCDR2, and ChMDR1) and ERG11 genes were not modulated by either fluconazole or voriconazole treatments. Further, ERG11 gene sequencing revealed several mutations, some of which culminated in amino acid polymorphisms, as previously reported in azole-resistant Candida spp. Collectively, these data point out the relevance of drug efflux pumps in mediating azole resistance in the C. haemulonii complex, and mutations in ERG11p may contribute to this resistance profile.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
Martyn H. Jeggo

More than 650 people from around 60 countries attended the 1st International One Health Conference, held in Melbourne from 14 to 16 February 2011. Scientists, clinicians, government and community members from a range of disciplines came together to discuss the benefits of working together to promote a One Health approach to human, animal and environmental health. One Health embraces systems thinking and recognising the interdependence of people, animals and environment. The conference was hosted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and was supported by international agencies, the Australian and Canadian governments, and industry.The Organising Committee recognised from the outset, the need to provide a forum not just for scientific presentation, but for open discussion and dialogue around the policy and political issues, as well as the science that drives the One Health agenda. The Committee was also cognizant of the need to embrace a definition of One Health that includes food security and food safety and included the social and economic pressures that shapes this area. The meeting was therefore organised under four themes with plenary sessions followed by breakout parallel sessions for each of these. The themes covered Disease Emergence, Environmental Drivers, Trade, Food Security and Food Safety, and Science Policy and Political Action. The plenary session commenced with one or two keynote presentations by world leaders on the topic being covered, followed by panel discussions involving six to eight experts and involving all participants at the congress. Each of the panel members spoke briefly on the topic covered by the keynote speaker and were asked to be as provocative as possible. The discussions that followed allowed debate and discussion on the keynote presentations and the panel members comments. This was followed by six to eight parallel breakout sessions involving in depth papers on the session’s topic. Throughout the conference at various times, sponsored sessions dealt with particular areas of science or policy providing a further framework not only to learn current science but for debate and discussion. A full copy of all abstracts is available on the web at http://www.springerlink.com.In concluding the Congress recognised the interdependence of, and seeks to improve human, animal and environmental health; recognised that communication, collaboration and trust between human and animal health practitioners is at the heart of the One Health concept; agreed that a broad vision that includes other disciplines such as economics and social behaviour is essential to success. The Congress stressed the need to promote the ‘do-able’ such as improving surveillance and response for emerging infectious diseases whilst developing the broader approach. It identified a need to emphasise community participation and development of community capacity, and especially, an open transparent dialogue with both a ‘ground up’ and ‘top down’ approach that would lead to an improved understanding of our ecosystems, including molecular ecobiology, are an essential part of One Health.


2021 ◽  
Vol 4 (9) ◽  
pp. 9799-9810
Author(s):  
Ioanna Eleftheriadou ◽  
Kleoniki Giannousi ◽  
Efthymia Protonotariou ◽  
Lemonia Skoura ◽  
Minas Arsenakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document